Skip to main content
Log in

Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The selection and genetic improvement of wine yeast is an ongoing process, since yeast strains should match new technologies in winemaking to satisfy evolving consumer preferences. A large genetic background is the necessary starting point for any genetic improvement programme. For this reason, we collected and characterized a large number of strains belonging to Saccharomyces uvarum. In particular, 70 strains were isolated from cold-stored must samples: they were identified and compared to S. uvarum strains originating from different collections, regarding fermentation profile, spore viability and stress response. The results demonstrate a large biodiversity among the new isolates, with particular emphasis to fermentation performances, genotypes and high spore viability, making the isolates suitable for further genetic improvement programmes. Furthermore, few of them are competitive with Saccharomyces cerevisiae and per se, suitable for wine fermentation, due to their resistance to stress, short lag phase and fermentation by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams J, Puskas-Rozsa S, Simlar J, Wilke CM (1992) Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr Genet 22:13–19. doi:10.1007/BF00351736

    Article  CAS  PubMed  Google Scholar 

  • Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarède I, Albertin W, Durrens P, Sherman DJ, Marullo P, Hittinger CT, Gonçalves P, Sampaio JP (2014) A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat Commun 5:4044. doi:10.1038/ncomms5044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antunovics Z, Irinyi L, Sipiczki M (2005) Combined application of methods to taxonomic identification of Saccharomyces strains in fermenting botrytized grape must. J Appl Microbiol 98:971–979. doi:10.1111/j.1365-2672.2005.02543.x

    Article  CAS  PubMed  Google Scholar 

  • Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122:188–195. doi:10.1016/j.ijfoodmicro.2007.11.083

    Article  CAS  PubMed  Google Scholar 

  • Beney L, Marechal PA, Gervais P (2001) Coupling effects of osmotic pressure and temperature on the viability of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56:513–516. doi:10.1007/s002530100619

    Article  CAS  PubMed  Google Scholar 

  • Bing J, Han P-J, Liu W-Q, Wang Q-M, Bai F-Y (2014) Evidence for a far east asian origin of lager beer yeast. Curr Biol 24:R380–R381. doi:10.1016/j.cub.2014.04.031

    Article  CAS  PubMed  Google Scholar 

  • Bon E, Neuvéglise C, Casaregola S, Artiguenave F, Wincker P, Aigle M, Durrens P (2000) Genomic exploration of the Hemiascomycetous yeasts: 5. Saccharomyces bayanus var. uvarum. FEBS Lett 487:37–41. doi:10.1016/S0014-5793(00)02276-6

    Article  CAS  PubMed  Google Scholar 

  • Bonciani T, Solieri L, De Vero L, Giudici P (2016) Improved wine yeasts by direct mating and selection under stressful fermentative conditions. 242:899–910. doi: 10.1007/s00217-015-2596-6

  • Brandolini V, Tedeschi P, Capece A, Maietti A, Mazzotta D, Salzano G, Paparella A, Romano P (2002) Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World J Microbiol Biotechnol 18:499–503. doi:10.1023/A:1016306813502

    Article  CAS  Google Scholar 

  • Castellari L, Ferruzzi M, Magrini A, Giudici P, Passarelli P, Zambonelli C (1994) Unbalanced wine fermentation by cryotolerant vs. non-cryotolerant Saccharomyces strains. Vitis 33:49–52

    Google Scholar 

  • Charoenchai C, Fleet GH, Henschke PA (1998) Effects of temperature, pH, and sugar concentration on the growth rates and cell biomass of wine yeasts. Am J Enol Vitic 49:283–288

    CAS  Google Scholar 

  • Charpentier C, Colin A, Alais A, Legras JL (2009) French Jura flor yeasts: genotype and technological diversity. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 95:263–273. doi:10.1007/s10482-009-9309-8

    Article  Google Scholar 

  • D’Amato D, Corbo MR, Del Nobile MA, Sinigaglia M (2006) Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. Int J Food Sci Technol 41:1152–1157. doi:10.1111/j.1365-2621.2005.01128.x

    Article  Google Scholar 

  • da Silva T, Albertin W, Dillmann C, Bely M, la Guerche S, Giraud C, Huet S, Sicard D, Masneuf-Pomarède I, de Vienne D, Marullo P (2015) Hybridization within Saccharomyces genus results in homoeostasis and phenotypic novelty in winemaking conditions. PLoS One 10:e0123834. doi:10.1371/journal.pone.0123834

    Article  PubMed  PubMed Central  Google Scholar 

  • De Barros Lopes M, Bellon JR, Shirley NJ, Ganter PF (2002) Evidence for multiple interspecific hybridization in Saccharomyces sensu stricto species. FEMS Yeast Res 1:323–331. doi:10.1016/S1567-1356(01)00051-4

    Article  CAS  PubMed  Google Scholar 

  • Eglinton JM, McWilliam S, Fogarty M, Francis L, Kwiatkowsli M, Hoj P, Henschke PA (2000) The effect of Saccharomyces bayanus-mediated fermentation on the chemical composittion and aroma profile of chardonnay wine. Aust J Grape Wine Res 6:190–196. doi:10.1213/ANE.0b013e318273f2c7

    Article  CAS  Google Scholar 

  • Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49(Pt 1):329–337. doi:10.1099/00207713-49-1-329

    Article  CAS  PubMed  Google Scholar 

  • Fernández-González M, Úbeda JF, Briones AI (2015) Study of Saccharomyces cerevisiae wine strains for breeding through fermentation efficiency and tetrad analysis. Curr Microbiol 70:441–449. doi:10.1007/s00284-014-0741-2

    Article  PubMed  Google Scholar 

  • Ferreira J, Du Toit M, Du Toit WJ (2006) The effects of copper and high sugar concentrations on growth, fermentation efficiency and volatile acidity production of different commercial wine yeast strains. Aust J Grape Wine Res 12:50–56. doi:10.1111/j.1755-0238.2006.tb00043.x

    Article  CAS  Google Scholar 

  • Fischer G, James SA, Roberts IN, Oliver SG, Louis EJ (2000) Chromosomal evolution in Saccharomyces. Nature 405:451–454. doi:10.1038/35013058

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (1993) Wine microbiology and biotechnology. Taylor & Francis, London

    Google Scholar 

  • Gangl H, Batusic M, Tscheik G, Tiefenbrunner W, Hack C, Lopandic K (2009) Exceptional fermentation characteristics of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. New Biotechnol 25:244–251. doi:10.1016/j.nbt.2008.10.001

    Article  CAS  Google Scholar 

  • Giudici P, Kunkee RE (1994) The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeasts. Am J Enol Vitic 45:107–112

    CAS  Google Scholar 

  • Giudici P, Zambonelli C, Passarelli P, Castellari L, Brief T (1995) Improvement of wine composition with cryotolerant Saccharomyces strains. Am J Enol Vitic 46:143–147

    CAS  Google Scholar 

  • Giudici P, Caggia C, Pulvirenti A, Zambonelli C, Rainieri S (1998) Electrophoretic profile of hybrids between cryotolerant and non-cryotolerant Saccharomyces strains. Lett Appl Microbiol 27:31–34. doi:10.1046/j.1472-765X.1998.00377.x

    Article  CAS  PubMed  Google Scholar 

  • Giudici P, Caggia C, Pulvirenti A, Restuccia C (1999) Cryotolerant Saccharomyces strains and spoilage of refrigerated musts. Ann Microbiol 49:155–161

    Google Scholar 

  • Giudici P, Solieri L, Pulvirenti AM, Cassanelli S (2005) Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628. doi:10.1007/s00253-004-1784-2

    Article  CAS  PubMed  Google Scholar 

  • Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomyces wine yeast for reduction in the ethanol content in wine. Eur Food Res Technol:1–8. doi:10.1007/s00217-014-2187-y

  • Gonçalves P, Valério E, Correia C, de Almeida JMGCF, Sampaio JP (2011) Evidence for divergent evolution of growth temperature preference in sympatric Saccharomyces species. PLoS One 6:e20739. doi:10.1371/journal.pone.0020739

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  • Le Jeune C, Lollier M, Demuyter C, Erny C, Legras J-L, Aigle M, Masneuf-Pomarède I (2007) Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Res 7:540–549. doi:10.1111/j.1567-1364.2007.00207.x

    Article  CAS  PubMed  Google Scholar 

  • Legras J-L, Merdinoglu D, Cornuet J-M, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16:2091–2102. doi:10.1111/j.1365-294X.2007.03266.x

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Hittinger CT, Valerio E, Goncalves C, Dover J, Johnston M, Goncalves P, Sampaio JP (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci 108:14539–14544. doi:10.1073/pnas.1105430108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Pilone GJ (2000) An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61. doi:10.1046/j.1365-2621.2000.00341.x

    Article  CAS  Google Scholar 

  • Magyar I, Tóth T (2011) Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol 28:94–100. doi:10.1016/j.fm.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  • Masneuf-Pomarède I, Bely M, Marullo P, Lonvaud-Funel A, Dubourdieu D (2010) Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. Int J Food Microbiol 139:79–86. doi:10.1016/j.ijfoodmicro.2010.01.038

    Article  PubMed  Google Scholar 

  • Masneuf-Pomarède I, Salin F, Börlin M, Coton E, Coton M, Le Jeune C, Legras JL (2016) Microsatellite analysis of Saccharomyces uvarum diversity. FEMS Yeast Res 16:1–12. doi:10.1093/femsyr/fow002

    Article  Google Scholar 

  • Mezzetti F, De Vero L, Giudici P (2014) Evolved Saccharomyces cerevisiae wine strains with enhanced glutathione production obtained by an evolution-based strategy. FEMS Yeast Res 14:977–987. doi:10.1111/1567-1364.12186

    Article  CAS  PubMed  Google Scholar 

  • Naumov GI (2000) Saccharomyces bayanus var. uvarum comb. nov., a new variety established by genetic analysis. Mikrobiologiia 69:410–414

    CAS  PubMed  Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50:1931–1942

    Article  CAS  PubMed  Google Scholar 

  • Naumov GI, Nguyen H-V, Naumova ES, Michel A, Aigle M, Gaillardin C (2001) Genetic identification of Saccharomyces bayanus var. uvarum, a cider-fermenting yeast. Int J Food Microbiol 65:163–171. doi:10.1016/S0168-1605(00)00515-8

    Article  CAS  PubMed  Google Scholar 

  • Naumov GI, Naumova ES, Antunovics Z, Sipiczki M (2002) Saccharomyces bayanus var. uvarum in Tokaj wine-making of Slovakia and Hungary. Appl Microbiol Biotechnol 59:727–730. doi:10.1007/s00253-002-1077-6

    Article  CAS  PubMed  Google Scholar 

  • Naumova ES, Naumov GI, Michailova YV, Martynenko NN, Masneuf-Pomarède I (2011) Genetic diversity study of the yeast Saccharomyces bayanus var. uvarum reveals introgressed subtelomeric Saccharomyces cerevisiae genes. Res Microbiol 162:204–213. doi:10.1016/j.resmic.2010.09.023

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Lepingle A, Gaillardin C (2000) Molecular typing demonstrates homogeneity of Saccharomyces uvarum strains and reveals the existence of hybrids between S. uvarum and S. cerevisiae, including the S. bayanus type strain. Syst Appl Microbiol 85:71–85. doi:10.1016/S0723-2020(00)80048-X

    Article  Google Scholar 

  • Nguyen H, Gaillardin C (2005) Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum ( Beijerinck ) as a distinct species. FEMS Yeast Res 5:471–483. doi:10.1016/j.femsyr.2004.12.004

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H-V, Legras JL, Neuvéglise C, Gaillardin C (2011) Deciphering the hybridisation history leading to the lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380 T. PLoS One 6:e25821. doi:10.1371/journal.pone.0025821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp. 225–233

    Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729. doi:10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B

  • Pulvirenti A, Nguyen H-V, Caggia C, Giudici P, Rainieri S, Zambonelli C (2000) Saccharomyces uvarum, a proper species within Saccharomyces Sensu stricto. FEMS Microbiol Lett 192:191–196. doi:10.1016/S0378-1097(00)00431-6

    Article  CAS  PubMed  Google Scholar 

  • Rainieri S, Giudici P, Zambonelli C (1998) Oenological properties of Saccharomyces bayanus and Saccharomyces cerevisiae interspecific hybrids. Food Technol Biotechnol 36:51–53

    Google Scholar 

  • Rainieri S, Zambonelli C, Hallsworth JE, Pulvirenti A, Giudici P (1999) Saccharomyces uvarum, a distinct group within Saccharomyces sensu stricto. FEMS Microbiol Lett 177:177–185. doi:10.1016/S0378-1097(99)00259-1

    Article  CAS  PubMed  Google Scholar 

  • Rainieri S, Zambonelli C, Kaneko Y (2003) Saccharomyces sensu stricto: systematics, genetic diversity and evolution. J Biosci Bioeng 96:1–9. doi:10.1263/jbb.96.1

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Castrillón M, Mendes SDC, Inostroza-Ponta M, Valente P (2014) (GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts? PLoS One 9:e105870. doi:10.1371/journal.pone.0105870

    Article  PubMed  PubMed Central  Google Scholar 

  • Rementeria A (2003) Yeast associated with spontaneous fermentations of white wines from the “Txakoli de Bizkaia” region (Basque Country, North Spain). Int J Food Microbiol 86:201–207. doi:10.1016/S0168-1605(03)00289-7

    Article  CAS  PubMed  Google Scholar 

  • Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Environ Microbiol 65:143–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter CL, Dunn B, Sherlock G, Pugh T (2013) Comparative metabolic footprinting of a large number of commercial wine yeast strains in Chardonnay fermentations. FEMS Yeast Res 13:394–410. doi:10.1111/1567-1364.12046

    Article  CAS  PubMed  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236. doi:10.1093/nar/gkp874

    Article  CAS  PubMed  Google Scholar 

  • Salvadó Z, Arroyo-López FN, Guillamón JM, Salazar G, Querol A, Barrio E (2011) Temperature adaptation markedly determines evolution within the genus Saccharomyces. Appl Environ Microbiol 77:2292–2302. doi:10.1128/AEM.01861-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, Rine J, Johnston M, Hittinger CT, Andrews BJ (2011) The awesome power of yeast evolutionary genetics: new genome sequences and strain resources for the Saccharomyces Sensu stricto genus. G3 Genes|Genomes|Genetics 1:11–25. doi:10.1534/g3.111.000273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra A, Strehaiano P, Taillandier P (2005) Influence of temperature and pH on Saccharomyces bayanus var. uvarum growth; impact of a wine yeast interspecific hybridization on these parameters. Int J Food Microbiol 104:257–265. doi:10.1016/j.ijfoodmicro.2005.03.006

  • Sheehan C, Weiss AS (1990) Yeast artificial chromosomes: rapid extraction for high resolution analysis. Nucleic Acids Res 18:2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solieri L, Landi S, De Vero L, Giudici P (2006) Molecular assessment of indigenous yeast population from traditional balsamic vinegar. J Appl Microbiol 101(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Solieri L, Antúnez O, Pérez-Ortín JE, Barrio E, Giudici P (2008) Mitochondrial inheritance and fermentative: oxidative balance in hybrids between Saccharomyces cerevisiae and Saccharomyces uvarum. Yeast 25:485–500. doi:10.1002/yea

    Article  CAS  PubMed  Google Scholar 

  • Solieri L, Verspohl A, Bonciani T, Caggia C, Giudici P (2015) Fast method for identifying inter- and intra-species Saccharomyces hybrids in extensive genetic improvement programs based on yeast breeding. J Appl Microbiol. doi:10.1111/jam.12827

    PubMed  Google Scholar 

  • Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier B.V, London, pp. 65–83

    Chapter  Google Scholar 

  • Sun X, Liu L, Zhao Y, Ma T, Zhao F, Huang W, Zhan J (2016) Effect of copper stress on growth characteristics and fermentation properties of Saccharomyces cerevisiae and the pathway of copper adsorption during wine fermentation. Food Chem 192:43–52. doi:10.1016/j.foodchem.2015.06.107

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhao Y, Liu L, Jia B, Zhao F, Huang W, Zhan J (2015) Copper tolerance and biosorption of Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 10:e0128611. doi:10.1371/journal.pone.0128611

    Article  PubMed  PubMed Central  Google Scholar 

  • Tofalo R, Perpetuini G, Fasoli G, Schirone M, Corsetti A, Suzzi G (2014) Biodiversity study of wine yeasts belonging to the “terroir” of Montepulciano d’Abruzzo “Colline Teramane” revealed Saccharomyces cerevisiae strains exhibiting atypical and unique 5.8S-ITS restriction patterns. Food Microbiol 39:7–12. doi:10.1016/j.fm.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • Vaughan Martini A, Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomyces sensu stricto. Int J Syst Bacteriol 35:508–511. doi:10.1099/00207713-35-4-508

    Article  Google Scholar 

  • Warth AD (1985) Resistance of yeast species to benzoic and sorbic acids and to sulfur dioxide. J Food Prot 48:564–569

    Article  CAS  Google Scholar 

  • Weiss S, Samson F, Navarro D, Casaregola S (2013) YeastIP: a database for identification and phylogeny of Saccharomycotina yeasts. FEMS Yeast Res 13:117–125. doi:10.1111/1567-1364.12017

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Orlando, pp. 315–322

    Google Scholar 

  • Zhang H, Richards KD, Wilson S, Lee SA, Sheehan H, Roncoroni M, Gardner RC (2015) Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries. Food Microbiol 46:92–99. doi:10.1016/j.fm.2014.07.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by the AEB Group (Brescia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Verspohl.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verspohl, A., Solieri, L. & Giudici, P. Exploration of genetic and phenotypic diversity within Saccharomyces uvarum for driving strain improvement in winemaking. Appl Microbiol Biotechnol 101, 2507–2521 (2017). https://doi.org/10.1007/s00253-016-8008-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8008-4

Keywords

Navigation