Skip to main content
Log in

Ferric iron uptake genes are differentially expressed in the presence of copper sulfides in Acidithiobacillus ferrooxidans strain LR

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Acidithiobacillus ferrooxidans is one of the most widely used microorganisms in bioleaching operations to recover copper from low-grade copper sulfide ores. This work aimed to investigate the relative expression of genes related to the iron uptake system when A. ferrooxidans LR was maintained in contact with chalcopyrite or bornite as the sole energy source. Real-time quantitative PCR analysis revealed that the presence of bornite had no effect on the expression of seven genes related to the siderophore-mediated Fe(III) uptake system, while in the presence of chalcopyrite the expression of the genes was up-regulated. Bioinformatic analysis of the genomic region where these genes were found revealed the existence of three new putative DNA-binding sequences for the ferric iron uptake transcriptional regulator (Fur). Electrophoretic mobility shift assays demonstrated that a purified A. ferrooxidans His-tagged Fur protein was able to bind in vitro to each of these putative Fur boxes, suggesting that Fur regulated the expression of these genes. The expression of fur and two known Fur-regulated genes, mntH and dsrK, was also investigated in the presence of chalcopyrite. While the expression of fur and mntH was up-regulated, the expression of dsrK was down-regulated. The low amount of ferrous iron in the medium was probably responsible for the up-regulation of fur and the genes related to the siderophore-mediated Fe(III) uptake system when A. ferrooxidans LR was kept in the presence of chalcopyrite. A homology model of the A.ferrooxidans Fur was constructed and revealed that the putative DNA-binding surface presents conserved positively charged residues, supporting a previously suggested mode of interaction with DNA. The up-regulation of fur and the siderophore-mediated Fe(III) uptake genes, and the down-regulation of dsrK suggest that in the presence of chalcopyrite Fur acts as a transcription inducer and repressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Bairoch A, Boeckmann B, Ferro S, Gasteiger E (2004) Swiss-Prot: juggling between evolution and stability. Brief Bioinform 5:39–55

    Article  CAS  PubMed  Google Scholar 

  • Bevilaqua D, Diéz-Perez I, Fugivara CS, Sanz F, Garcia O Jr, Benedetti AV (2003) Characterization of bornite (Cu5FeS4) electrodes in the presence of the bacterium Acidithiobacillus ferrooxidans. J Braz Chem Soc 14:637–644

    Article  CAS  Google Scholar 

  • Carlos C, Reis FC, Vicentini R, Madureira DJ, Ottoboni LMM (2008) The rus operon genes are differentially regulated when Acidithiobacillus ferrooxidans LR is kept in contact with metal sulfides. Curr Microbiol 57:375–380

    Article  CAS  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System on the World Wide Web http://www.pymol.org

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Ferraz LFC, Verde LCL, Reis FC, Alexandrino F, Felício AP, Novo MTM, Garcia O Jr, Ottoboni LMM (2010) Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans. Arch Microbiol 192:531–540

    Article  CAS  PubMed  Google Scholar 

  • Garcia O Jr (1991) Isolation and purification of Thiobacillus ferrooxidans and Thiobacillus thiooxidans from some coal and uranium mines of Brazil. Rev Microbiol 22:1–6

    Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  • Griggs DW, Tharp BB, Konisky J (1987) Cloning and promoter identification of the iron-regulated cir gene of Escherichia coli. J Bacteriol 169:5343–5352

    CAS  PubMed  Google Scholar 

  • Hall HK, Foster JW (1996) The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178:5683–5691

    CAS  PubMed  Google Scholar 

  • Kehres DG, Zaharik ML, Finlay BB, Maguire ME (2000) The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−DDCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Makui H, Roig E, Cole ST, Helmann JD, Gros P, Cellier MF (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240

    Article  CAS  PubMed  Google Scholar 

  • Paulino LC, Mello MP, Ottoboni LMM (2002) Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Eletrophoresis 23:520–527

    Article  CAS  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex–a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249–262

    Article  CAS  PubMed  Google Scholar 

  • Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    Article  CAS  PubMed  Google Scholar 

  • Quatrini R, Lefimil C, Holmes DS, Jedlicki E (2005a) The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology 151:2005–2015

    Article  CAS  PubMed  Google Scholar 

  • Quatrini R, Jedlicki E, Holmes DS (2005b) Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J Ind Microbiol Biotechnol 32:606–614

    Article  CAS  PubMed  Google Scholar 

  • Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35:2153–2166

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Reents H, Münch R, Dammeyer T, Jahn D, Härtig E (2006) The Fnr regulon of Bacillus subtilis. J Bacteriol 188:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Rivas M, Seeger M, Holmes DS, Jedlicki E (2005) A lux-like quorum sensing system in the extreme acidophile Acidithiobacillus ferrooxidans. Biol Res 38:283–297

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Schneider TD (1997) Information content of individual genetic sequences. J Theor Biol 189:427–441

    Article  CAS  PubMed  Google Scholar 

  • Third KA, Cord-Ruwisch R, Watling HR (2000) The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy 57:225–233

    Article  CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14 CO2-fixation and iron oxidation as measures of growth. Arch Mikrobiol 88:285–298

    Article  CAS  PubMed  Google Scholar 

  • Vogel AI (1981) Análise inorgânica quantitativa, 4 edn. Guanabara Kogan, Rio de Janeiro

  • Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from Company Vale. LCLV received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). APF, LFCF and FA received fellowships from Fundação de Apoio à Ciência, Tecnologia e Educação (FACTE). LMMO and OGJr received research fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. M. Ottoboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraz, L.F.C., Verde, L.C.L., Vicentini, R. et al. Ferric iron uptake genes are differentially expressed in the presence of copper sulfides in Acidithiobacillus ferrooxidans strain LR. Antonie van Leeuwenhoek 99, 609–617 (2011). https://doi.org/10.1007/s10482-010-9533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-010-9533-2

Keywords

Navigation