Skip to main content
Log in

The rus Operon Genes Are Differentially Regulated When Acidithiobacillus ferrooxidans LR is Kept in Contact with Metal Sulfides

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy from the oxidation of ferrous iron or reduced sulfur compounds. In this bacterium, the proteins encoded by the rus operon are involved in electron transfer from Fe(II) to O2, and the first two proteins in this pathway also participate in the electron transfer pathway from Fe(II) to NAD(P). In this work we analyzed the expression, by real-time PCR, of the eight genes from the rus operon when A. ferrooxidans LR was grown in the presence of iron (control) and then kept in contact with chalcopyrite (CuFeS2) and covellite (CuS). A small decrease in rus operon gene expression was observed in the presence of chalcopyrite, while in the presence of covellite the expression of these genes showed a remarkable decrease. These results can be explained by the absence of ferrous iron in covellite. To explain the expression difference observed between the gene cyc1 and the gene rus, we investigated the information content presented at the Translation Initiation Site (TIS) of both genes. cyc1 showed a highly information content (8.4 bits) that can maximize translation, and rus showed a less favorable context (5.5 bits). Our hypothesis is that the energetic metabolism in A. ferrooxidans may be controlled at the transcriptional and posttranscriptional level by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V (1999) Characterization of an operon encoding two c-type cytochromes, an aa 3-type cytochrome oxidase and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65:4781–4787

    PubMed  CAS  Google Scholar 

  2. Bengrine A, Guiliani N, Appia-Ayme C, Jedlicki E, Holmes DS, Chippaux M, Bonnefoy V (1998) Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC 33020 strain. Biochim Biophys Acta 1443:99–112

    PubMed  CAS  Google Scholar 

  3. Brasseur G, Levican G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D (2004) Apparent redundancy of electron transfer pathways via bc(1) complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta 1656:114–126

    Article  PubMed  CAS  Google Scholar 

  4. Bruscella P, Appia-Ayme C, Levicán G, Ratouchniak J, Jedlicki E, Holmes DS, Bonnefoy V (2007) Differential expression of two bc 1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology 153:102–110

    Article  PubMed  CAS  Google Scholar 

  5. Elbehti A, Brasseur G, Lemesle-Meunier D (2000) First evidence for existence of an uphill electron transfer through the bc 1 and NADH-Q oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous iron-oxidizing bacterium Thiobacillus ferrooxidans. J Bacteriol 182:3602–3606

    Article  PubMed  CAS  Google Scholar 

  6. Garcia O Jr (1991) Isolation and purification of Thiobacillus ferrooxidans and Thiobacillus thiooxidans from some coal and uranium mines of Brazil. Revista Microbiol 22:1–6

    Google Scholar 

  7. Hauryliuk V, Ehrenberg M (2006) Two-step selection of mRNAs in initiation of protein synthesis. Mol Cell 22:155–156

    Article  PubMed  CAS  Google Scholar 

  8. Holmes DS, Bonnefoy V (2007) Genetic and bioinformatics insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson BD (eds) Biomining. Springer-Verlag, New York, pp 281–307

    Chapter  Google Scholar 

  9. Ingledew WJ (1982) T. ferrooxidans, the bioenergetics of an acidophilic chemolithotrophic bacteria. Biochim Biophys Acta 683:89–117

    PubMed  CAS  Google Scholar 

  10. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  11. Quatrini R, Appia-Ayme C, Denis Y et al (2006) Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy 83:263–272

    Article  CAS  Google Scholar 

  12. Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498

    Article  PubMed  CAS  Google Scholar 

  13. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  PubMed  CAS  Google Scholar 

  14. Steitz JA, Jakes K (1975) How ribosomes select initiator regions in mRNA: base pair formation between the 3’ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci USA 72:4734–4738

    Article  PubMed  CAS  Google Scholar 

  15. Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ore. Z Allg Mikrobiol 12:311–346

    Article  PubMed  CAS  Google Scholar 

  16. Vicentini R, Menossi M (2007) TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets. BMC Bioinform 8:160

    Article  Google Scholar 

  17. Winderickx J, Castro JM (1994) Pratical course in molecular biology of microorganisms. Universidade Federal de Ouro Preto-MG, January 23–February 11, p 59

  18. Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002) The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184:313–317

    Article  PubMed  Google Scholar 

  19. Yarzábal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology 150:2113–2123

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2005/51332-7). L.M.M.O. received a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). C.C. (06/54433-1) and F.C.R. (05/00139-2) received fellowships from FAPESP. D.J.M. (134062/2006-0) received a fellowship from CNPq. The authors thank Dr. O. Garcia Jr., for providing A. ferrooxidans strain LR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. M. Ottoboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlos, C., Reis, F.C., Vicentini, R. et al. The rus Operon Genes Are Differentially Regulated When Acidithiobacillus ferrooxidans LR is Kept in Contact with Metal Sulfides. Curr Microbiol 57, 375–380 (2008). https://doi.org/10.1007/s00284-008-9208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9208-7

Keywords

Navigation