Skip to main content
Log in

Metal Resistance-Related Genes are Differently Expressed in Response to Copper and Zinc Ion in Six Acidithiobacillus ferrooxidans Strains

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Metal resistance of acidophilic bacteria is very significant during bioleaching of copper ores since high concentration of metal is harmful to the growth of microorganisms. The resistance levels of six Acidithiobacillus ferrooxidans strains to 0.15 M copper and 0.2 M zinc were investigated, and eight metal resistance-related genes (afe-0022, afe-0326, afe-0329, afe-1143, afe-0602, afe-0603, afe-0604, and afe-1788) were sequenced and analyzed. The transcriptional expression levels of eight possible metal tolerance genes in six A. ferrooxidans strains exposed to 0.15 M Cu2+ and 0.2 M Zn2+ were determined by real-time quantitative PCR (RT-qPCR), respectively. The copper resistance levels of six A. ferrooxidans strains declined followed by DY26, DX5, DY15, GD-B, GD-0, and YTW. The zinc tolerance levels of six A. ferrooxidans strains exposed to 0.2 M Zn2+ from high to low were YTW > GD-B > DY26 > GD-0 > DX5 > DY15. Seven metal tolerance-related genes all presented in the genome of six strains, except afe-0604. The metal resistance-related genes showed different transcriptional expression patterns in six A. ferrooxidans strains. The expression of gene afe-0326 and afe-0022 in six A. ferrooxidans strains in response to 0.15 M Cu2+ showed the same trend with the resistance levels. The expression levels of genes afe-0602, afe-0603, afe-0604, and afe-1788 in six strains response to 0.2 M Zn2+ did not show a clear correlation between the zinc tolerance levels of six strains. According to the results of RT-qPCR and bioinformatics analysis, the proteins encoded by afe-0022, afe-0326, afe-0329, and afe-1143 were related to Cu2+ transport of A. ferrooxidans strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Das A, Modak JM, Natarajan K (1998) Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie Van Leeuwenhoek 73:215–222

    Article  PubMed  CAS  Google Scholar 

  2. Ferraz LF, Verde LC, Reis FC, Alexandrino F, Felício AP, Novo MT, Garcia O Jr, Ottoboni LM (2010) Gene expression modulation by chalcopyrite and bornite in Acidithiobacillus ferrooxidans. Arch Microbiol 192:531–540

    Article  PubMed  CAS  Google Scholar 

  3. Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  PubMed Central  Google Scholar 

  4. Galleguillos P, Remonsellez F, Galleguillos F, Guiliani N, Castillo D, Demergasso C (2008) Identification of differentially expressed genes in an industrial bioleaching heap processing low-grade copper sulphide ore elucidated by RNA arbitrarily primed polymerase chain reaction. Hydrometallurgy 94:148–154

    Article  CAS  Google Scholar 

  5. Johnson D (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–157

    Article  CAS  Google Scholar 

  6. Loftin IR, Franke S, Roberts SA, Weichsel A, Héroux A, Montfort WR, Rensing C, McEvoy MM (2005) A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry 44:10533–10540

    Article  PubMed  CAS  Google Scholar 

  7. Luo Y, Liu Y, Zhang C, Luo H, Guan H, Liao H, Qiu G, Liu X (2008) Insights into two high homogenous genes involved in copper homeostasis in Acidithiobacillus ferrooxidans. Curr Microbiol 57:274–280

    Article  PubMed  CAS  Google Scholar 

  8. Magnani D, Solioz M (2007) How bacteria handle copper. Molecular microbiology of heavy metals. Springer, Berlin, pp 259–285

    Chapter  Google Scholar 

  9. Mangold S, Potrykus J, Bjorn E, Lovgren L, Dopson M (2013) Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 17:75–85

    Article  PubMed  CAS  Google Scholar 

  10. Matthews JMSM (2002) Zinc fingers: folds for many occasions. IUBMB Life 54:351–355

    Article  PubMed  CAS  Google Scholar 

  11. Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    Article  PubMed  CAS  Google Scholar 

  12. Mykytczuk NC, Trevors JT, Ferroni GD, Leduc LG (2011) Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans. Microbiol Res 166:186–206

    Article  PubMed  CAS  Google Scholar 

  13. Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  PubMed  CAS  Google Scholar 

  15. Orellana LH, Jerez CA (2011) A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage. Appl Microbiol Biotechnol 92:761–767

    Article  PubMed  CAS  Google Scholar 

  16. Ouyang J, Guo W, Li B, Gu L, Zhang H, Chen X (2013) Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration. Microbiol Res 168:455–460

    Article  PubMed  CAS  Google Scholar 

  17. Paulino LC, de Mello MP, Ottoboni LM (2002) Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Electrophoresis 23:520–527

    Article  PubMed  CAS  Google Scholar 

  18. Puig S, Rees EM, Thiele DJ (2002) The ABCDs of periplasmic copper trafficking. Structure 10:1292–1295

    Article  PubMed  CAS  Google Scholar 

  19. Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35:2153–2166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  PubMed  CAS  Google Scholar 

  21. Rawlings DE, Kusano T (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbioll Rev 58:39–55

    CAS  Google Scholar 

  22. Reis FC, Madureira DJ, Vicentini R, Carlos C, Ferraz LFC, Garcia O, Ottoboni LMM (2010) Transporter protein genes are differentially expressed in Acidithiobacillus ferrooxidans LR maintained in contact with covellite. World J Microb Biot 26:2061–2068

    Article  CAS  Google Scholar 

  23. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu (I)-translocating P-type ATPase. P Natl Acad Sci USA 97:652–656

    Article  CAS  Google Scholar 

  24. Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  PubMed  CAS  Google Scholar 

  25. Sá-Pereira P, Rodrigues M, Castro IV E, Simoes F (2007) Identification of an arsenic resistance mechanism in rhizobial strains. World J Microb Biot 23:1351–1356

    Article  Google Scholar 

  26. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    Article  PubMed  CAS  Google Scholar 

  27. Su C-C, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA (2009) Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol 393:342–355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Teitzel GM, Geddie A, Susan K, Kirisits MJ, Whiteley M, Parsek MR (2006) Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol 188:7242–7256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Ward SK, Hoye EA, Talaat AM (2008) The global responses of Mycobacterium tuberculosis to physiological levels of copper. J Bacteriol 190:2939–2946

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Watling H (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  31. Xia JL, Wu S, Zhang RY, Zhang CG, He H, Jiang HC, Nie ZY, Qiu GZ (2011) Effects of copper exposure on expression of glutathione-related genes in Acidithiobacillus ferrooxidans. Curr Microbiol 62:1460–1466

    Article  PubMed  CAS  Google Scholar 

  32. Xue-ling W, Peng Y, Qi H, Dong-mei H, Bo M, Guan-zhou Q (2011) Bioleaching of chalcopyrite by Acidithiobacillus ferrooxidansDY15, DY26 and DC and difference expressions of gene Afe0022. Chin J Nonferrous Metals 21:0392–0398

    Google Scholar 

  33. Xue Y, Davis AV, Balakrishnan G, Stasser JP, Staehlin BM, Focia P, Spiro TG, Penner-Hahn JE, O’Halloran TV (2007) Cu (I) recognition via cation-π and methionine interactions in CusF. Nat Chem Biol 4:107–109

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Wu X, Liu D, Duan H, Fan H (2013) Sequencing and bioinformatics analysis of the metal-related genes in Acidithiobacillus ferrooxidans strain DC. Folia Microbiol (Praha) 58:551–560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Key Basic Research Program of China (No. 2010CB630901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, Z., Liu, L. et al. Metal Resistance-Related Genes are Differently Expressed in Response to Copper and Zinc Ion in Six Acidithiobacillus ferrooxidans Strains. Curr Microbiol 69, 775–784 (2014). https://doi.org/10.1007/s00284-014-0652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0652-2

Keywords

Navigation