Skip to main content
Log in

Studies on the growth of Thiobacillus ferrooxidans

I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2-fixation and iron oxidation as measures of growth

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

A method for enumeration of viable numbers of Thiobacillus ferrooxidans using membrane filters on ferrous-iron agar is presented. Factors affecting colony production were the concentration and brand of agar, pH of the medium, and type of membrane filter. The results suggest that inhibition of T. ferrooxidans by agar is a result of the acid hydrolysis of agar, the main product of which is d-galactose. Colony development was suppressed by aged medium, by acid-hydrolysed agar and by 0.1% galactose. Sartorius and Millipore membrane filters were suitable for the experiments, whereas Oxoid MF-50 membranes virtually suppressed the production of colonies. The method was employed to follow growth of T. ferrooxidans in pH 1.3 medium. The viable cell numbers were correlated with 14CO2-fixation and ferrous iron oxidation. Generation time was 6 h 22 min with a yield of 2.2×1012 organisms/g atom Fe2+ oxidized. Growth of T. neapolitanus on thiosulphate medium was not affected by agar-type or membrane filters and yield of the organism was 1.5×1013 organisms/g molecule Na2S2O3 oxidized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, J. V.: A ferrous-ion-oxidizing bacterium. I. Isolation and some general physiological characteristics. J. Bact. 79, 502–509 (1960).

    PubMed  Google Scholar 

  • Beck, J. V.: The role of bacteria in copper mining operations. Biotechnol. Bioeng. 9, 487–497 (1967).

    Google Scholar 

  • Blaylock, B. A., Nason, A.: Electron transport systems of the chemoautotroph Ferrobacillus ferrooxidans. J. biol. Chem. 238, 3453–3462 (1963).

    PubMed  Google Scholar 

  • Bryner, L. C., Jameson, A. K.: Microorganisms in leaching sulfide minerals. Appl. Microbiol. 6, 281–287 (1958).

    PubMed  Google Scholar 

  • Conn, H. J. (Editor): Manual of microbiological methods, pp. 64–66. New York: McGraw Hill Inc. 1957.

    Google Scholar 

  • Golomzik, A. I., Ivanov, V. I.: Adaptation of Thiobacillus ferrooxidans to increased hydrogen ion and iron concentrations. Mikrobiologiya 34, 465–468 (1965).

    Google Scholar 

  • Happold, F. C., Johnstone, K. I., Rogers, H. J., Youatt, J. B.: The isolation and characteristics of an organism oxidizing thiocyanate. J. gen. Microbiol. 10, 261–266 (1954).

    PubMed  Google Scholar 

  • Kelly, D. P.: The incorporation of acetate by the chemoautotroph Thiobacillus neapolitanus strain C. Arch. Mikrobiol. 58, 99–116 (1967).

    PubMed  Google Scholar 

  • Kelly, D. P.: Fluoroacetate toxicity in Thiobacillus neapolitanus and its relevance to the problem of obligate chemoautotrophy. Arch. Mikrobiol. 61, 59–76 (1968).

    PubMed  Google Scholar 

  • Kelly, D. P.: Regulation of chemoautotrophic metabolism. I. Toxicity of phenylalanine to Thiobacilli. Arch. Mikrobiol. 69, 330–342 (1969).

    PubMed  Google Scholar 

  • Kelly, D. P.: Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Ann. Rev. Microbiol. 25, 177–210 (1971).

    Article  Google Scholar 

  • Kelly, D. P., Syrett, P. J.: The effect of uncoupling agents on carbon dioxide fixation by a Thiobacillus. J. gen. Microbiol. 34 307–317 (1964).

    Google Scholar 

  • Kelly, D. P., Tuovinen, O. H.: Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braley and F. sulfooxidans Kinsel be recognised as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int. J. Syst. Bact. 22, 170–172 (1972).

    Google Scholar 

  • Lapteva, A. M., Kriuchkov, V. A., Golomzik, A. I.: Application of gel plates impregnated with the medium 9K for quantitative control and isolation of Thiobacillus ferrooxidans. Mikrobiologiya 40, 572–574 (1971).

    Google Scholar 

  • Leathen, W. W., Kinsel, N. A., Braley, S. A.: Ferrobacillus ferrooxidans, a chemosynthetic autotrophic bacterium. J. Bact. 72, 700–704 (1956).

    PubMed  Google Scholar 

  • Leathen, W. W., McIntyre, L. D., Braley, S. A.: A medium for the study of the bacterial oxidation of ferrous iron. Science 114, 280–281 (1951).

    PubMed  Google Scholar 

  • MacDonald, D. G., Clark, R. H.: The oxidation of aqueous ferrous sulphate by Thiobacillus ferrooxidans. Canad. J. Chem. Engng. 48, 669–676 (1970).

    Google Scholar 

  • McGoran, C. J. M., Duncan, D. W., Walden, C. C.: Growth of Thiobacillus ferrooxidans on various substrates. Canad. J. Microbiol. 15, 135–138 (1969).

    Google Scholar 

  • Merck Index: Editor, P. G. Stecher. 8th Edit., p. 24. Rahway, N. J.: Merck & Co. Inc. 1968.

    Google Scholar 

  • Niemelä, S. I., Tuovinen, O. H.: Acidophilic thiobacilli in the river Sirppujoki. J. gen. Microbiol. 73, 23–28 (1972).

    Google Scholar 

  • Pramer, D.: The influence of physical and chemical factors on the preparation of silica gel media. Appl. Microbiol. 5, 392–395 (1957).

    PubMed  Google Scholar 

  • Reports on public health and medical subjects, number 71: The bacteriological examination of water supplies. London: Her Majesty's Stationary Office 1969.

  • Shafia, F., Wilkinson, R. F.: Growth of Ferrobacillus ferrooxidans on organic matter. J. Bact. 97, 256–260 (1969).

    PubMed  Google Scholar 

  • Short, S. A., White, D. C., Aleem, M. I. H.: Phospholipid metabolism in Ferrobacillus ferrooxidans. J. Bact. 99, 142–150 (1969).

    PubMed  Google Scholar 

  • Silver, M.: Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Canad. J. Microbiol. 16, 845–849 (1970).

    Google Scholar 

  • Tabita, R., Lundgren, D. G.: Utilization of glucose and the effect of organic compounds on the chemolithotroph Thiobacillus ferrooxidans. J. Bact. 108, 328–333 (1971).

    PubMed  Google Scholar 

  • Temple, K. L., Colmer, A. R.: The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans. J. Bact. 62, 605–611 (1951).

    PubMed  Google Scholar 

  • Tuovinen, O. H.: Microbiological aspects in the leaching of uranium by Thiobacillus ferrooxidans. Atomic Energy Rev. 10, 251–258 (1972).

    Google Scholar 

  • Tuovinen, O. H., Kelly, D. P.: Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z. allg. Mikrobiol. 12, 311–346 (1972).

    PubMed  Google Scholar 

  • Tuovinen, O. H., Niemelä, S. I., Gyllenberg, H. G.: Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 13, 517–527 (1971a).

    Google Scholar 

  • Tuovinen, O. H., Niemelä, S. I., Gyllenberg, H. G.: Toxicity of membrane filters to Thiobacillus ferrooxidans. Z. allg. Mikrobiol. 11, 627–631 (1971b).

    PubMed  Google Scholar 

  • Unz, R. F., Lundgren, D. G.: A comparative nutritional study of three chemoautotrophic bacteria: Ferrobacillus ferrooxidans, Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Soil Sci. 92, 302–313 (1961).

    Google Scholar 

  • Usami, S., Sugitani, T.: The effect of organic substances on the growth and iron oxidation activity of iron oxidizing bacteria. J. Ferment. Technol. 49, 587–591 (1971).

    Google Scholar 

  • Yates, M. G., Nason, A.: Enhancing effect of nucleic acids and their derivates in the reduction of cytochrome c by ferrous iron. J. biol. Chem. 251, 4861–4871 (1966).

    Google Scholar 

  • Zavarzin, G. A.: Heterotrophic contaminant of Thiobacillus ferrooxidans culture. Mikrobiologiya 41, 369–370 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuovinen, O.H., Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans . Archiv. Mikrobiol. 88, 285–298 (1973). https://doi.org/10.1007/BF00409941

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409941

Keywords

Navigation