Skip to main content

Advertisement

Log in

Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energy metabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HS:

Hydrogen/sulphate medium

LS:

Lactate/sulphate medium

LT:

Lactate/thiosulphate medium

PS:

Pyruvate/sulphate medium

P:

Pyruvate medium

SRB:

Sulphate-reducing bacteria

TpIc3 :

Type I cytochrome c3

References

  • Badziong W, Bernhard D, Thauer RK (1979) Acetate and carbon dioxide assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as sole energy source. Arch Microbiol 123:301–305

    Article  CAS  Google Scholar 

  • Badziong W, Thauer RK (1978) Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol 117:209–214

    Article  PubMed  CAS  Google Scholar 

  • Caffrey SM, Park H-S, Voordouw JK, He Z, Zhou J, Voordouw G (2007) Function of periplasmic hydrogenases in the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:6159–6167

    Article  PubMed  CAS  Google Scholar 

  • Clark ME, He Q, He Z, Huang KH, Alm EJ, Wan XF, Hazen TC, Arkin AP, Wall JD, Zhou JZ, Fields MW (2006) Temporal transcriptomic analysis as Desulfovibrio vulgaris hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol 72:5578–5588

    Article  PubMed  CAS  Google Scholar 

  • Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  PubMed  CAS  Google Scholar 

  • Dolla A, Pohorelic BK, Voordouw JK, Voordouw G (2000) Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol 174:143–151

    Article  PubMed  CAS  Google Scholar 

  • Goenka A, Voordouw JK, Lubitz W, Gartner W, Voordouw G (2005) Construction of a [NiFe]-hydrogenase deletion mutant of Desulfovibrio vulgaris Hildenborough. Biochem Soc Trans 33:59–60

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WA (1998) Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9:201–212

    Article  PubMed  CAS  Google Scholar 

  • Haveman SA, Brunelle V, Voordouw JK, Voordouw G, Heidelberg JF, Rabus R (2003) Gene expression analysis of energy metabolism mutants of Desulfovibrio vulgaris Hildenborough indicates an important role for alcohol dehydrogenase. J Bacteriol 185:4345–4353

    Article  PubMed  CAS  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950

    Article  PubMed  CAS  Google Scholar 

  • He Q, Huang KH, He Z, Alm EJ, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2006) Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis. Appl Environ Microbiol 72:4370–4381

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Forzi L (2005) Energy converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 10:92–104

    Article  PubMed  CAS  Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou LW, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Article  PubMed  CAS  Google Scholar 

  • Keon RG, Fu R, Voordouw G (1997) Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough. Arch Microbiol 167:376–383

    Article  PubMed  CAS  Google Scholar 

  • Koo MS, Lee JH, Rah SY, Yeo WS, Lee JW, Lee KL, Koh YS, Kang SO, Roe JH (2003) A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J 22:2614–2622

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  PubMed  CAS  Google Scholar 

  • Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol 159:843–849

    PubMed  CAS  Google Scholar 

  • Magee EL, Ensley BD Jr, Barton LL (1978) An assessment of growth yields and energy coupling in Desulfovibrio. Arch Microbiol 117:21–26

    Article  CAS  Google Scholar 

  • Maroc J, Azerad R, Kamen MD, Le Gall J (1970) Menaquinone (MK-6) in the sulfate-reducing obligate anaerobe, Desulfovibrio. Biochim Biophys Acta 197:87–89

    Article  PubMed  CAS  Google Scholar 

  • Meuer J, Kuettner HC, Zhang JK, Hedderich R, Metcalf WW (2002) Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci 99:5632–5637

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Redding A, Joachimiak MP, Arkin A, Borglin SC, Dehal PS, Chakraborty R, Geller JT, Hazen TC, He Q, Joyner DC, Martin VJJ, Wall J, Yang ZK, Keasling JD (2007) Cell wide responses to low oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Bioplys Res Commun 339:603–610

    Article  CAS  Google Scholar 

  • Odom JM, Peck HD (1981) Hydrogen cycling as a general mechanism for energy coupling in the sulphate-reducing bacterium Desulfovibrio sp. FEMS Microbiol Lett 12:47–50

    Article  CAS  Google Scholar 

  • Pankhania IP, Spormann AM, Hamilton WA, Thauer RK (1988) Lactate conversion to acetate, CO2 and H2 in cell-suspensions of Desulfovibrio vulgaris (Marburg) —Indications for the involvement of an energy driven reaction. Arch Microbiol 150:26–31

    Article  CAS  Google Scholar 

  • Pereira IAC, Haveman SA, Voordouw G (2007) Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing delta-proteobacteria. In: Bolton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, UK

  • Pereira IA, Romão CV, Xavier AV, Le Gall J, Teixeira M (1998) Electron transfer between hydrogenases and mono and multiheme cytochromes in Desulfovibrio spp. J Biol Inorg Chem 3:494–498

    Article  CAS  Google Scholar 

  • Pereira PM, Teixeira M, Xavier AV, Louro RO, Pereira IAC (2006) The Tmc complex from Desulfovibrio vulgaris Hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation. Biochemistry 45:10359–10367

    Article  PubMed  CAS  Google Scholar 

  • Pires RH, Lourenco AI, Morais F, Teixeira M, Xavier AV, Saraiva LM, Pereira IA (2003) A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605:67–82

    Article  PubMed  CAS  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex - a membrane-bound redox complex involved in sulfate respiration. Biochemistry 45:249–262

    Article  PubMed  CAS  Google Scholar 

  • Pohorelic BK, Voordouw JK, Lojou E, Dolla A, Harder J, Voordouw G (2002) Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. J Bacteriol 184:679–686

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Rabus R, Hansen T, Widdel F (2001) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiologic community [online]. Springer Science Online, Heidelberg, Germany

    Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glockner FO, Lupas AN, Amann R, Klenk HP (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902

    Article  PubMed  CAS  Google Scholar 

  • Rapp-Giles BJ, Casalot L, English RS, Ringbauer JA Jr, Dolla A, Wall JD (2000) Cytochrome c 3 mutants of Desulfovibrio desulfuricans. Appl Environ Microbiol 66:671–677

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Pollock WB, Reij MW, Keon RG, Fu R, Voordouw G (1993) The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699–4711

    PubMed  CAS  Google Scholar 

  • Schmehl M, Jahn A, Vilsendorf AMZ, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen-fixation genes in Rhodobacter capsulatus - a putative membrane complex involved in electron-transport to nitrogenase. Mol Gen Genet 241:602–615

    Article  PubMed  CAS  Google Scholar 

  • Steuber J (2001) Na(+) translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 1505:45–56

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD (2007) Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. J Bacteriol 189:940–949

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    Article  PubMed  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Traoré AS, Hatchikian CE, Belaich JP, Le Gall J (1981) Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth. J Bacteriol 145:191–199

    PubMed  Google Scholar 

  • Truper HG (1984) Phototrophic bacteria and their sulfur metabolism. In: Müller A, Krebs B (eds) Sulfur: its significance for chemistry, for the geo-, bio- and cosmophere, and technology. Elsevier, Amsterdam, pp 351–365

  • Valente FAA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC (2006) Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:3228–3235

    Article  PubMed  CAS  Google Scholar 

  • Valente FM, Oliveira AS, Gnadt N, Pacheco I, Coelho AV, Xavier AV, Teixeira M, Soares CM, Pereira IA (2005) Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J Biol Inorg Chem 10:667–682

    Article  PubMed  CAS  Google Scholar 

  • Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA (2001) A membrane-bound cytochrome c 3: a type II cytochrome c 3 from Desulfovibrio vulgaris Hildenborough. Chembiochem 2:895–905

    Article  PubMed  CAS  Google Scholar 

  • Voordouw G (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol 184:5903–5911

    Article  PubMed  CAS  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium Reduction. Ann Rev Microbiol 60:149–166

    Article  CAS  Google Scholar 

  • Wood PM (1978) A chemiosmotic model for sulphate respiration. FEBS Letts 95:12–18

    Article  CAS  Google Scholar 

  • Zhang W, Culley DE, Scholten JC, Hogan M, Vitiritti L, Brockman FJ (2006a) Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie Van Leeuwenhoek 89:221–237

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Gritsenko MA, Moore RJ, Culley DE, Nie L, Petritis K, Strittmatter EF, Camp DG II, Smith RD, Brockman FJ (2006b) A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics 6:4286–4299

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Cruz F, Ferry JG (2001) Iron-sulfur flavoprotein (Isf) from Methanosarcina thermophila is the prototype of a widely distributed family. J Bacteriol 183:6225–6233

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia grants PPCDT/2004/QUI/55690 to ROL and PTDC/QUI/68368/2006 to IACP, co-funded by FEDER program, and by the United States Department of Energy under Genomics:GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://www.vimss.lbl.gov), Office of Biological and Environmental Research, Office of Science to JZ. PMP was a recipient of the FCT PhD grant SFRH/BD/5231/2001. The authors are grateful to Prof. Gerrit Voordouw for helpful discussions and sharing data prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo O. Louro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, P.M., He, Q., Valente, F.M.A. et al. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie van Leeuwenhoek 93, 347–362 (2008). https://doi.org/10.1007/s10482-007-9212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9212-0

Keywords

Navigation