Skip to main content
Log in

Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

In this paper, we consider the following coupled Schrödinger system with χ(2) nonlinearities

$\left\{ \begin{array}{l} - \Delta {u_1} + {V_1}\left( x \right){u_1} = \alpha {u_1}{u_2},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in {^N}, \\ - \Delta {u_2} + {V_2}\left( x \right){u_2} = \frac{\alpha }{2}u_1^2 + \beta u_2^2,\,\,\,\,\,\,\,\,\,\,\,\,\,x \in {^N}, \\ \end{array} \right.$

which arises from second-harmonic generation in quadratic media. Here V1(x) and V2(x) are radially positive functions, 2 ≤ N < 6, α > 0 and α > β. Assume that the potential functions V1(x) and V2(x) satisfy some algebraic decay at infinity. Applying the finite dimensional reduction method, we construct an unbounded sequence of non-radial vector solutions of synchronized type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A, Colorado E. Bound and ground states of coupled nonlinear Schrödinger equations. C R Math Acad Sci Paris, 2006, 342: 453–458

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti A, Colorado E. Standing waves of some coupled nonlinear Schrödinger equations. J Lond Math Soc, 2007, 75: 67–82

    Article  MathSciNet  Google Scholar 

  3. Bartsch T, Dancer N, Wang Z-Q. Aliouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc Var Parital Diffierential Equations, 2010, 37: 345–361

    Article  Google Scholar 

  4. Bartsch T, Wang Z-Q, Wei J. Bound states for a coupled Schrödinger system. J Fixed Point Theory Appl, 2007, 2: 253–367

    Article  Google Scholar 

  5. Berestycki H, Lions P-L. Nonlinear scalar field equations. I. Existence of a ground state. Arch Ration Mech Anal, 1983, 82: 313–345

    Article  MathSciNet  Google Scholar 

  6. Buryak A V, Trapani P D, Skryabin D V, Trillo S. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys Rep, 2002, 370: 63–235

    Article  MathSciNet  Google Scholar 

  7. Buryak A V, Kivshar Y S. Solitons due to second harmonic generation. Phys Lett A, 1995, 197: 407–412

    Article  MathSciNet  Google Scholar 

  8. Cao D, Noussair E S, Yan S. Solutions with multiple peaks for nonlinear elliptic equations. Proc R Soc Edinburgh Sect A, 1999, 129: 235–264

    Article  MathSciNet  Google Scholar 

  9. Cazenave T. Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, 10. New York: New York University Courant Insitute of Mathematical Sciences, 2003

  10. Colorado E. Existence of bound and ground states for a system of coupled nonlinear Schrödinger-KdV equations. C R Math Acad Sci Paris, 2015, 353: 511–516

    Article  MathSciNet  Google Scholar 

  11. Colorado E. On the existence of bound and ground states for some coupled nonlinear Schrödinger-Korteweg-de Vries equations. Adv Nonlinear Anal, 2017, 6: 407–426

    MathSciNet  MATH  Google Scholar 

  12. de Figueiredo D G, Lopes O. Solitary waves for some nonlinear Schrödinger systems. Ann Inst H Poincaré Anal Non Linéaire, 2007, 25: 149–161

    Article  Google Scholar 

  13. Dias J P, Figueira M, Oliveira F. Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity. C R Math Acad Sci Paris, 2010, 348: 1079–1082

    Article  MathSciNet  Google Scholar 

  14. Dias J P, Figueira M, Oliveira F. Well-posedness and existence of bound states for a coupled Schrödinger-gKdv system. Nonlinear Anal, 2010, 73: 2686–2698

    Article  MathSciNet  Google Scholar 

  15. Li G B, Wang C H. The existence of nontrivial solutions to a semilinear elliptic system on ℝN without the Ambrosetti-Rabinowitz condition. Acta Math Sci, 2010, 30B: 1917–1936

    MathSciNet  MATH  Google Scholar 

  16. Lin T C, Wei J. Ground state of N coupled nonlinear Schrödinger equations in ℝN, n ≤ 3. Comm Math Phys, 2005, 255: 629–653

    Article  MathSciNet  Google Scholar 

  17. Lin T C, Wei J. Spikes in two coupled nonlinear Schrödingerequations. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22: 403–439

    Article  MathSciNet  Google Scholar 

  18. Montefusco E, Pellacci B, Squassina M. Semiclassical states for weakly coupled nonlinear Schrödinger systems. J Eur Math Soc, 2008, 10: 47–71

    Article  MathSciNet  Google Scholar 

  19. Noris B, Tavares H, Terracini S, Verzini G. Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Comm Pure Appl Math, 2008, 63: 267–302

    Article  Google Scholar 

  20. Rey O. The role of the Green’s function in a non-linear elliptic equation involving the critical Sobolev exponent. J Funct Anal, 1990, 89: 1–52

    Article  MathSciNet  Google Scholar 

  21. Peng S, Wang Z-Q. Segregated and synchronized vector solutions for nonlinear Schrödinger systems. Arch Ration Mech Anal, 2013, 208: 305–339

    Article  MathSciNet  Google Scholar 

  22. Sirakov B. Least energy solitary waves for a system of nonlinear Schrödinger equation in ℝN. Comm Math Phys, 2007, 271: 199–221

    Article  MathSciNet  Google Scholar 

  23. Strauss W A. Existence of solitary waves in higher dimensions. Comm Math Phys, 1977, 55: 149–162

    Article  MathSciNet  Google Scholar 

  24. Sulem C, Sulem P-L. The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Applied Mathematical Sciences 139. New York: Springer-Verlag, 1999

    Google Scholar 

  25. Terracini S, Verzini G. Multipusle Phase in k-mixtures of Bose-Einstein condensates in ℝN. Arch Ration Mech Anal, 2009, 194: 717–741

    Article  MathSciNet  Google Scholar 

  26. Wang C H, Xie D Y, Zhan L P, Zhang L P, Zhao L P. Segregated vector solutions for nonlinear Schrödinger systems in ℝ2. Acta Math Sci, 2015, 35B: 393–398

    Google Scholar 

  27. Wei J, Weth T. Nonradial symmetric bound states for a system of two coupled Schrödinger equations. Atti Accad Naz Lincei Rend Mat Appl, 2007, 18: 279–293

    MathSciNet  MATH  Google Scholar 

  28. Wei J, Weth T. Radial solutions and phase seperation in a system of coupled Schrödinger equations. Arch Ration Mech Anal, 2008, 190: 83–106

    Article  MathSciNet  Google Scholar 

  29. Wei J, Yan S. Infinitely many solutions for the nonlinear Schrödinger equations in ℝN. Calc Var Patial Differential Equations, 2010, 37: 423–439

    Article  Google Scholar 

  30. Yew A C. Multipulses of nonlinearly coupled Schrödinger equations. J Differential Equations, 2001, 173: 92–137

    Article  MathSciNet  Google Scholar 

  31. Yew A C, Champneys A R, McKenna P J. Multiple solitary waves due to second-harmonic generation in quadratic media. J Nonlinear Sci, 1999, 9: 33–52

    Article  MathSciNet  Google Scholar 

  32. Zhao L, Zhao F, Shi J. Higher dimensional Solitary waves generated by second-harmonic generation in quadratic media. Calc Var Partial Differential Equations, 2015, 54: 2657–2691

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Prof. S. Peng for his helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang  (王春花).

Additional information

This paper was partially supported by NSFC (11671162; 11601194), CCNU18CXTD04 and CZQ13017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhou, J. Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media. Acta Math Sci 40, 16–34 (2020). https://doi.org/10.1007/s10473-020-0102-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-020-0102-3

Key words

2010 MR Subject Classification

Navigation