Skip to main content
Log in

Higher dimensional solitary waves generated by second-harmonic generation in quadratic media

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Schrödinger type soliton waves generated by second-harmonic generation in higher dimensional quadratic optical media are considered. The existence of ground state solutions for spatial dimension from two to five is proved, and the continuous dependence on the parameter and asymptotic behavior of ground state solutions are established. Multi-pulse solutions with certain symmetry are also obtained. In a bounded domain setting, global bifurcation diagram of multi-pulse solutions are shown by using new technique of double saddle-node bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75(1), 67–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10(3), 391–404 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3–4), 345–361 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bartsch, T., Wang, Z.-Q., Wei, J.-C.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bates, P.W., Shi, J.-P.: Existence and instability of spike layer solutions to singular perturbation problems. J. Funct. Anal. 196(2), 211–264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  8. Brezis, H., Lieb, E.: Minimum action solutions of some vector field equations. Commun. Math. Phys. 96(1), 97–113 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brown, K.J., Lin, S.S.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75(1), 112–120 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buryak, A.V., Di Trapani, P., Skryabin, D.V., Trillo, S.: Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370(2), 63–235 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buryak, A.V., Kivshar, Y.S.: Solitons due to second harmonic generation. Phys. Lett. A 197(5–6), 407–412 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cazenave, T.: Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York (2003)

  14. Chen, C.-C., Lin, C.-S.: Uniqueness of the ground state solutions of \(\Delta u+f(u)=0\) in \({\mathbf{R}}^n,\;n\ge 3\). Commun. Partial Differ. Equ. 16(8–9), 1549–1572 (1991)

    Article  MATH  Google Scholar 

  15. Chen, Z.-J., Lin, C.-S., Zou, W.-M.: Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations. J. Differ. Equ. 255(11), 4289–4311 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, Z.-J., Zou, W.-M.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205(2), 515–551 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dancer, E.N., Wei, J.-C.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361(3), 1189–1208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dancer, E.N., Wei, J.-C., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 953–969 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. de Figueiredo, D.G., Lopes, O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(1), 149–161 (2008)

    Article  MATH  Google Scholar 

  21. Ding, W.-Y., Ni, W.-M.: On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Ration. Mech. Anal. 91(4), 283–308 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Han, J., Huh, H., Seok, J.: Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field. J. Funct. Anal. 266(1), 318–342 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hayashi, N., Ozawa, T., Tanaka, K.: On a system of nonlinear Schrödinger equations with quadratic interaction. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(4), 661–690 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kwong, M.-K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbf{R}}^n\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kwong, M.-K., Zhang, L.-Q.: Uniqueness of the positive solution of \(\Delta u+f(u)=0\) in an annulus. Differ. Integr. Equ. 4(3), 583–599 (1991)

    MATH  MathSciNet  Google Scholar 

  26. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  27. Lieb, E.H., Loss, M.: Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2001)

  28. Lin, T.-C., Wei, J.-C.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \(\mathbf{R}^n,\, n\le 3\). Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    MATH  Google Scholar 

  31. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    MATH  Google Scholar 

  32. Liu, P., Shi, J.-P., Wang, Y.-W.: A double saddle-node bifurcation theorem. Commun. Pure Appl. Anal. 12(6), 2923–2933 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Liu, Z.-L., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282(3), 721–731 (2008)

    Article  MATH  Google Scholar 

  34. Lopes, O.: Uniqueness of a symmetric positive solution to an ODE system. Electron. J. Differ. Equ. 8, 162 (2009)

    MathSciNet  Google Scholar 

  35. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    MATH  MathSciNet  Google Scholar 

  38. Rabinowitz, P.H.: Nonlinear Sturm-Liouville problems for second order ordinary differential equations. Commun. Pure Appl. Math. 23, 939–961 (1970)

    Article  MathSciNet  Google Scholar 

  39. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rabinowitz, P.H.: On bifurcation from infinity. J. Differ. Equ. 14, 462–475 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, vol. 65 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1986)

  42. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Sato, Y., Wang, Z.-Q.: On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(1), 1–22 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Shi, J.-P., Wang, X.-F.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246(7), 2788–2812 (2009)

    Article  MATH  Google Scholar 

  45. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \(\mathbb{R}^n\). Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977)

    Article  MATH  Google Scholar 

  47. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation: Self-focusing and wave collapse, vol. 139 of Applied Mathematical Sciences. Springer-Verlag, New York (1999)

  48. Terracini, S., Verzini, G.: Multipulse phases in \(k\)-mixtures of Bose-Einstein condensates. Arch. Ration. Mech. Anal. 194(3), 717–741 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tian, R.-S., Wang, Z.-Q.: Multiple solitary wave solutions of nonlinear Schrödinger systems. Topol. Methods Nonlinear Anal. 37(2), 203–223 (2011)

    MATH  MathSciNet  Google Scholar 

  50. Tian, R.-S., Wang, Z.-Q.: Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete Contin. Dyn. Syst. 33(1), 335–344 (2013)

    MATH  MathSciNet  Google Scholar 

  51. Wei, J.-C., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190(1), 83–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Wei, J.-C., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11(3), 1003–1011 (2012)

    MATH  MathSciNet  Google Scholar 

  53. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc., Boston (1996)

    Google Scholar 

  54. Yew, A.C.: Multipulses of nonlinearly coupled Schrödinger equations. J. Differ. Equ. 173(1), 92–137 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  55. Yew, A.C., Champneys, A.R., McKenna, P.J.: Multiple solitary waves due to second-harmonic generation in quadratic media. J. Nonlinear Sci. 9(1), 33–52 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Zhao, L.-G., Zhao, F.-K.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346(1), 155–169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  57. Zhao, Y.-H., Wang, Y.-W., Shi, J.-P.: Steady states and dynamics of an autocatalytic chemical reaction model with decay. J. Differ. Equ. 253(2), 533–552 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank an anonymous reviewer for helpful suggestions and comments. This work was done when Zhao and Zhao visited Department of Mathematics, College of William and Mary in 2013–2014, and they would like to thank the College for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

Communicated by P. Rabinowitz.

This research is partially supported by the National Natural Science Foundation of China (11271264,11361078), National Science Foundation of US (DMS-1313243), Beijing Higher Education Young Elite Teacher Project (YETP0515) and China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Zhao, F. & Shi, J. Higher dimensional solitary waves generated by second-harmonic generation in quadratic media. Calc. Var. 54, 2657–2691 (2015). https://doi.org/10.1007/s00526-015-0879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0879-1

Mathematics Subject Classification

Navigation