Skip to main content
Log in

Standing waves with prescribed \(L^2\)-norm to nonlinear Schrödinger equations with combined inhomogeneous nonlinearities

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with solutions to the following nonlinear Schrödinger equation with combined inhomogeneous nonlinearities,

$$\begin{aligned} -\Delta u + \lambda u= \mu |x|^{-b}|u|^{q-2} u + |x|^{-b}|u|^{p-2} u \quad \text{ in } \,\, \mathbb {R}^N, \end{aligned}$$

under the \(L^2\)-norm constraint

$$\begin{aligned} \int _{\mathbb {R}^N} |u|^2 \, dx=c>0, \end{aligned}$$

where \(N \ge 1\), \(\mu =\pm 1\), \(2<q<p<{2(N-b)}/{(N-2)^+}\), \(0<b<\min \{2, N\}\) and the parameter \(\lambda \in \mathbb {R}\) appearing as Lagrange multiplier is unknown. In the mass subcritical case, we establish the compactness of any minimizing sequence to the minimization problem given by the underlying energy functional restricted on the constraint. As a consequence of the compactness of any minimizing sequence, orbital stability of minimizers is derived. In the mass critical and supercritical cases, we investigate the existence, radial symmetry and orbital instability of solutions. Meanwhile, we consider the existence, radial symmetry and algebraical decay of ground states to the corresponding zero mass equation with defocusing perturbation. In addition, dynamical behaviors of solutions to the Cauchy problem for the associated dispersive equation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albert, J., Bhattarai, S.: Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv. Differ. Equ. 18(11–12), 1129–1164 (2013)

    MathSciNet  Google Scholar 

  2. Ardila, A.H., Cardoso, M.: Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Commun. Pure Appl. Anal. 20(1), 101–119 (2021)

    MathSciNet  Google Scholar 

  3. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Global dynamics above the ground state energy for the combined power-type nonlinear Schrödinger equations with energy-critical growth at low frequencies. Mem. Am. Math. Soc. 272(1331), 130 (2021)

    Google Scholar 

  4. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017)

    MathSciNet  Google Scholar 

  5. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. Partial Differ. Equ. 58(1), 24 (2019)

    Google Scholar 

  6. Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial Differ. Equ. 46(9), 1729–1756 (2021)

    Google Scholar 

  7. Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R} ^3\). J. Math. Pures Appl. 106, 583–614 (2016)

    MathSciNet  Google Scholar 

  8. Bartsch, T., Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. 100, 75–83 (2013)

    MathSciNet  Google Scholar 

  9. Bartsch, T., Weth, T., Tobias, M.W.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    MathSciNet  Google Scholar 

  10. Bartsch, T., Zhong, X., Zou, W.: Normalized solutions for a coupled Schrödinger system. Math. Ann. 380(3–4), 1713–1740 (2021)

    MathSciNet  Google Scholar 

  11. Bellazzini, J., Forcella, L., Georgiev, V.: Ground state energy threshold and blow-up for NLS with competing nonlinearities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24(2), 955–988 (2023)

    MathSciNet  Google Scholar 

  12. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48, 2028–2058 (2016)

    MathSciNet  Google Scholar 

  13. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)

    MathSciNet  Google Scholar 

  14. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98(6), 064102 (2007)

    ADS  PubMed  Google Scholar 

  15. Bonheure, D., Casteras, J.-B., Gou, T., Jeanjean, L.: Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. Trans. Am. Math. Soc. 372(3), 2167–2212 (2019)

    Google Scholar 

  16. Brock, F., Solynin, A.Y.: An approach to symmetrization via polarization. Trans. Am. Math. Soc. 352(4), 1759–1796 (2000)

    MathSciNet  Google Scholar 

  17. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MathSciNet  Google Scholar 

  18. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. II. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Google Scholar 

  19. Campos, L.: Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. 202, 17 (2021)

    Google Scholar 

  20. Campos, L., Cardoso, M.: A Virial-Morawetz approach to scattering for the non-radial inhomogeneous NLS. Proc. Am. Math. Soc. 150(5), 2007–2021 (2022)

    MathSciNet  Google Scholar 

  21. Campos, L., Cardoso, M.: Blowup and scattering criteria above the threshold for the focusing inhomogeneous nonlinear Schrödinger equation. NoDEA Nonlinear Differ. Equ. Appl. 28(6), 33 (2021)

    Google Scholar 

  22. Cao, D., Chern, I.-L., Wei, J.-C.: On ground state of spinor Bose-Einstein condensates. NoDEA Nonlinear Differ. Equ. Appl. 18, 427–445 (2011)

    MathSciNet  Google Scholar 

  23. Catto, I., Dolbeault, J., Sánchez, O., Soler, J.: Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle. Math. Models Methods Appl. Sci. 23, 1915–1938 (2013)

    MathSciNet  Google Scholar 

  24. Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, AMS (2003)

  25. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    ADS  Google Scholar 

  26. Chen, W.-X., Li, C.-M., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)

    MathSciNet  Google Scholar 

  27. Cheng, X.: Scattering for the mass super-critical perturbations of the mass critical nonlinear Schrödinger equations. Illinois J. Math. 64(1), 21–48 (2020)

    MathSciNet  Google Scholar 

  28. Cheng, X., Miao, C., Zhao, L.: Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case. J. Differ. Equ. 261(6), 2881–2934 (2016)

    ADS  Google Scholar 

  29. Cingolani, S., Jeanjean, L.: Stationary waves with prescribed \(L^2\)-norm for the planar Schrödinger-Poisson system. SIAM J. Math. Anal. 51(4), 3533–3568 (2019)

    MathSciNet  Google Scholar 

  30. Dancer, E., Santra, S.: Singular perturbed problems in the zero mass case: asymptotic behavior of spikes. Ann. Mat. Pura Appl. 189(2), 185–225 (2010)

    MathSciNet  Google Scholar 

  31. Dancer, E., Santra, S., Wei, J.: Asymptotic behavior of the least energy solution of a problem with competing powers. J. Funct. Anal. 261(8), 2094–2134 (2011)

    MathSciNet  Google Scholar 

  32. De Bouard, A., Fukuizumi, R.: Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Ann. Henri Poincaré 6(6), 1157–1177 (2005)

    ADS  MathSciNet  Google Scholar 

  33. Dinh, V.D.: Blowup of \(H^1\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal. 174, 169–188 (2018)

    MathSciNet  Google Scholar 

  34. Dinh, V.D.: Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 19(2), 411–434 (2019)

    MathSciNet  Google Scholar 

  35. Dinh, V.D.: Energy scattering for a class of inhomogeneous nonlinear Schrödinger equation in two dimensions. J. Hyperbolic Differ. Equ. 18(1), 1–28 (2021)

    MathSciNet  Google Scholar 

  36. Dinh, V.D., Keraani, S.: Long time dynamics of nonradial solutions to inhomogeneous nonlinear Schrödinger equations. SIAM J. Math. Anal. 53(4), 4765–4811 (2021)

    MathSciNet  Google Scholar 

  37. Dinh, V.D., Keraani, S.: A compactness result for inhomogeneous nonlinear Schrödinger equations. Nonlinear Anal. 215, 29 (2022)

    Google Scholar 

  38. Esry, B.D., Greene, C.H., Jr., Burke, J.P., Bohn, J.L.: Hartree-Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    ADS  CAS  Google Scholar 

  39. Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ. 16(1), 193–208 (2016)

    MathSciNet  Google Scholar 

  40. Farah, L.G., Guzmán, C.M.: Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation. J. Differ. Equ. 262(8), 4175–4231 (2017)

    ADS  Google Scholar 

  41. Farah, L.G., Guzmán, C.M.: Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions. Bull. Braz. Math. Soc. (NS) 51(2), 449–512 (2020)

    MathSciNet  Google Scholar 

  42. Frantzeskakis, D.J.: Dark solitons in atomic Bose Einstein condensates: From theory to experiments. J. Phys. A: Math. Theor. 43, 213001 (2010)

    ADS  MathSciNet  Google Scholar 

  43. Fukaya, N., Hayashi, M.: Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. Trans. Am. Math. Soc. 374(2), 1421–1447 (2021)

    Google Scholar 

  44. Fukaya, N., Ohta, M.: Strong instability of standing waves with negative energy for double power nonlinear Schrödinger equations. SUT J. Math. 54(2), 131–143 (2018)

    MathSciNet  Google Scholar 

  45. Gao, C., Zhao, Z.: On scattering for the defocusing high dimensional inter-critical NLS. J. Differ. Equ. 267(11), 6198–6215 (2019)

    ADS  MathSciNet  Google Scholar 

  46. Garrisi, D.: On the orbital stability of standing-wave solutions to a coupled non-linear Klein-Gordon equation. Adv. Nonlinear Stud. 12(3), 639–658 (2012)

    MathSciNet  Google Scholar 

  47. Genoud, F.: A uniqueness result for \(\Delta u -\lambda u + V (| x|)u^p = 0\) on \(\mathbb{R} ^2\). Adv. Nonlinear Stud. 11(3), 483–491 (2011)

    MathSciNet  Google Scholar 

  48. Genoud, F.: An inhomogeneous, \(L^2\)-critical, nonlinear Schrödinger equation. Z. Anal. Anwend. 31(3), 283–290 (2012)

    MathSciNet  Google Scholar 

  49. Genoud, F., Stuart, C.A.: Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete Contin. Dyn. Syst. 21(1), 137–186 (2008)

    MathSciNet  Google Scholar 

  50. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambaridge University Press, Cambaridge (1993)

    Google Scholar 

  51. Gou, T.: Existence and orbital stability of standing waves to nonlinear Schrödinger system with partial confinement. J. Math. Phys. 59(7), 071508 (2018)

    ADS  MathSciNet  Google Scholar 

  52. Gou, T., Jeanjean, L.: Existence and orbital stability of standing waves for nonlinear Schrödinger systems. Nonlinear Anal. 144, 10–22 (2016)

    MathSciNet  Google Scholar 

  53. Gou, T., Jeanjean, L.: Multiple positive normalized solutions for nonlinear Schrödinger systems. Nonlinearity 31(5), 2319–2345 (2018)

    ADS  MathSciNet  Google Scholar 

  54. Gou, T., Zhang, Z.: Normalized solutions to the Chern-Simons-Schrödinger system. J. Funct. Anal. 280(5), 65p (2021)

    Google Scholar 

  55. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    MathSciNet  Google Scholar 

  56. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger-Poisson-Slater equation. J. Differ. Equ. 303, v277-325 (2021)

    ADS  Google Scholar 

  57. Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384(1–2), 101–134 (2022)

    MathSciNet  Google Scholar 

  58. Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59(5), 43 (2020)

    MathSciNet  Google Scholar 

  59. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    ADS  MathSciNet  Google Scholar 

  60. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy critical, focusing, nonlinear wave equation. Acta Math. 201(2), 147–212 (2008)

    MathSciNet  Google Scholar 

  61. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, Cambridge (2003)

    Google Scholar 

  62. Le Coz, S., Martel, Y., Raphaël, P.: Minimal mass blow up solutions for a double power nonlinear Schrödinger equation. Rev. Mat. Iberoam. 32(3), 795–833 (2016)

    MathSciNet  Google Scholar 

  63. Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, New York (2001)

    Google Scholar 

  64. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally com- pact case, part I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 109–145 (1984)

  65. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally com- pact case, part II, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 223–283 (1984)

  66. Liu, Y., Wang, X.-P., Wang, K.: Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity. Trans. Am. Math. Soc. 358(5), 2105–2122 (2006)

    Google Scholar 

  67. Luo, Y.: Sharp scattering threshold for the cubic-quintic nonlinear Schrödinger equation in the focusing-focusing regime. J. Funct. Anal. 283(1), 34 (2022)

    Google Scholar 

  68. Malomed, B.: Multi-Component Bose-Einstein Condensates: Theory, Emergent Nonlinear Phenomena in Bose-Einstein Condensation, pp. 287–305. Springer, Berlin (2008)

    Google Scholar 

  69. Merle, F.: Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2), 427–454 (1993)

    ADS  MathSciNet  Google Scholar 

  70. Miao, C., Xu, G., Zhao, L.: The dynamics of the 3D radial NLS with the combined terms. Commun. Math. Phys. 318(3), 767–808 (2013)

    ADS  MathSciNet  Google Scholar 

  71. Miao, C., Zhao, T., Zheng, J.: On the 4D nonlinear Schrödinger equation with combined terms under the energy threshold. Calc. Var. Partial Differ. Equ. 56(6), 39 (2017)

    Google Scholar 

  72. Nguyen, N.V., Wang, Z.-Q.: Orbital stability of solitary waves for a nonlinear Schrödinger system. Adv. Differ. Equ. 16, 977–1000 (2011)

    Google Scholar 

  73. Nguyen, N.V., Wang, Z.-Q.: Orbital stability of solitary waves of a 3-coupled nonlinear Schrödinger system. Nonlinear Anal. 90, 1–26 (2013)

    MathSciNet  Google Scholar 

  74. Nguyen, N.V., Wang, Z.-Q.: Existence and stability of a two-parameter family of solitary waves for a 2-couple nonlinear Schrödinger system. Discrete Contin. Dyn. Syst. 36, 1005–1021 (2016)

    MathSciNet  Google Scholar 

  75. Noris, B., Tavares, H., Verzini, G.: Existence and orbital stability of the ground states with prescribed mass for the \(L^2\)-critical and supercritical NLS on bounded domains. Anal. PDE 7(8), 1807–1838 (2014)

    MathSciNet  Google Scholar 

  76. Noris, B., Tavares, H., Verzini, G.: Stable solitary waves with prescribed \(L^2\)-mass for the cubic Schrödinger system with trapping potentials. Discrete Contin. Dyn. Syst. 35(12), 6085–6112 (2015)

    MathSciNet  Google Scholar 

  77. Noris, B., Tavares, H., Verzini, G.: Normalized solutions for nonlinear Schrödinger systems on bounded domains. Nonlinearity 32(3), 1044–1072 (2019)

    ADS  MathSciNet  Google Scholar 

  78. Pellacci, B., Pistoia, A., Vaira, G., Verzini, G.: Normalized concentrating solutions to nonlinear elliptic problems. J. Differ. Equ. 275, 882–919 (2021)

    ADS  MathSciNet  Google Scholar 

  79. Pierotti, D., Verzini, G.: Normalized bound states for the nonlinear Schrödinger equation in bounded domains. Calc. Var. Partial Differ. Equ. 56(5), 27 (2017)

    Google Scholar 

  80. Raphaël, P., Szeftel, J.: Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Amer. Math. Soc. 24(2), 471–546 (2011)

    MathSciNet  Google Scholar 

  81. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    ADS  MathSciNet  Google Scholar 

  82. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020)

    MathSciNet  Google Scholar 

  83. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32(7–9), 1281–1343 (2007)

    Google Scholar 

  84. Toland, J.F.: Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line. Proc. R. Soc. Edinburgh Sect. A 97, 259–263 (1984)

    MathSciNet  Google Scholar 

  85. Van Schaftingen, J.: Explicit approximation of the symmetric rearrangement by polarizations. Arch. Math. 93(2), 181–190 (2009)

    MathSciNet  Google Scholar 

  86. Xie, J.: Scattering for focusing combined power-type NLS. Acta Math. Sin. 30(5), 805–826 (2014)

    MathSciNet  Google Scholar 

  87. Yanagida, E.: Uniqueness of positive radial solutions of \(\Delta u + g(r)u + h(r)u^p = 0\) in \(\mathbb{R} ^n\). Arch. Rational Mech. Anal. 115(3), 257–274 (1991)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 12101483) and the Postdoctoral Science Foundation of China (No.2021M702620). The author thanks Prof. Vladimir Georgiev for helpful discussions. The author also thanks Dr. Alex H. Ardila for providing him with the references [67, 71].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxiang Gou.

Ethics declarations

Conflict of interest

The author declares that there are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, T. Standing waves with prescribed \(L^2\)-norm to nonlinear Schrödinger equations with combined inhomogeneous nonlinearities. Lett Math Phys 114, 7 (2024). https://doi.org/10.1007/s11005-023-01749-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01749-w

Keywords

Mathematics Subject Classification

Navigation