Skip to main content
Log in

Evidences of olive pollination date variations in relation to spring temperature trends

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Airborne pollen concentration patterns reflect flowering phenology of a given species, and it may be a sensitive regional indicator in climate change studies. This paper presents the relationship between a strategic biological event, such as olive flowering, and the air temperature trend, registered over a large scale (1982–2007) in the Umbria region. The aim of the study was to determine relationships between phenological behaviour (flowering) of olive trees and the air temperature trend (1982–2007) in the Umbria region. The phenological data on flowering phase were registered indirectly through an aerobiological monitoring technique. The obtained results showed a strong relationship between phenology and thermal trend. This characteristic was confirmed from results of correlations between temperature (mean temperature from 1st March) and flowering dates, especially that of full flowering (r = −0.9297). Moreover, the results showed an advance trend of 6, 8 and 10 days, respectively of start, full and end of flowering dates. The advance of the recorded flowering time in this period is to ascribe mainly to the increase of mean temperature and above all to that registered in months of May and June.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahas, R., & Aasa, A. (2006). The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. International Journal of Biometeorology, 51, 17–26.

    Article  Google Scholar 

  • Alcamo J, Moreno JM, Nováky B, Bindi M et al. (2007) Europe. Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (Eds.), Cambridge University Press, Cambridge, UK, 541–580.

  • Beaubien, E. G., & Freeland, H. J. (2000). Spring phenology trends in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44, 53–59.

    Article  CAS  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, et al. (2007) Summary for policymakers, climate change 2007: synthesis report. A contribution of working groups I, II, and III to the fourth assessment report of the integovernmental panel on climate change. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf. Accessed 02 September 2008.

  • Bini, G. (1984). Fioritura e impollinazione nell’olivo; indagini sul periodo d’impollinazione, recettività dello stigma ed evoluzione del gametofito femminile. Rivista Ortoflorofrutticoltura It, 68, 57–69.

    Google Scholar 

  • Bonofiglio, T., Orlandi, F., Sgromo, C., Romano, B., & Fornaciari, M. (2008). Influence of temperature and rainfall on timing of olive (Olea europaea) flowering in southern Italy. New Zealand journal of crop and horticultural science, 36(1), 59–69.

    Google Scholar 

  • Chmielewski, F. M., & Rötzer, T. (2002). Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Climate Research, 19, 257–264.

    Article  Google Scholar 

  • Chuine, I., Belmonte, J., & Mignot, A. (2000). A modelling analysis of the genetic variation of phenology between tree populations. Journal of Ecology, 88, 561–570.

    Article  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environvironment, 21, 455–466.

    Article  Google Scholar 

  • D’Amato, G., Cecchi, L., Bovini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., et al. (2007). Allergenic pollen and allergy in Europe. European Journal of Allergy and Clinical Immunology, 62, 976–990.

    Article  Google Scholar 

  • D’Amato, G., & Spieksma, F Th M. (1990). Allergenic pollen in Europa. Grana, 30, 67–70.

    Article  Google Scholar 

  • Donnelly A, Salamin N, Jones MB (2006). Changes in tree phenology: an indicator of spring warming in Ireland? Biology and Environment: Procedings of the Royal Irish Accademy 106(1): 49–56.

  • Emberlin, J., Smith, M., Close, R., & Adams-Groom, B. (2007). Changes in the pollen season of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. International Journal of Biometeorology, 51(3), 181–191.

    Article  Google Scholar 

  • Estrella, N., Menzel, A., Krämer, U., & Behrendt, H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). International Journal of Biometeorology, 51(1), 49–59.

    Article  Google Scholar 

  • Estrella, N., Sparks, T. H., & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology, 13, 1737–1747.

    Article  Google Scholar 

  • Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296(5573), 1689–1691.

    Article  CAS  Google Scholar 

  • Fornaciari, M., Galan, C., Dominguez, E., & Romano, B. (2000). Aeropalinological and phenological study in two different Mediterranean olive areas: Cordoba (Spain) and Perugia (Italy). Plant Biosystem, 134(2), 199–204.

    Article  Google Scholar 

  • Fornaciari, M., Pieroni, L., Orlandi, F., & Romano, B. (2002). A new approach to consider the pollen variable in forecasting yield models. Economic Botany, 56(1), 66–72.

    Article  Google Scholar 

  • Galán, C., Cariňanos, P., García-Mozo, H., Alcazar, P., & Dominguez-Vilches, E. (2001). Model for forecasting Olea europaea L. Airbonne pollen in south-west Andalusia, Spain. International Journal of Biometeorology, 45(2), 59–69.

    Article  Google Scholar 

  • Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Domínguez-Vilches, E. (2008). Modeling olive crop yield in Andalusia, Spain. Agronomy Journal, 100(1), 98–104.

    Article  Google Scholar 

  • Galán, C., García-Mozo, H., Vázquez, L., Ruiz, L., Díaz de la Guardia, C., & Trigo, M. M. (2005). Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. International Journal of Biometeorology, 49, 184–188.

    Article  Google Scholar 

  • Galán, C., Vázquez, L., García-Mozo, H., & Domínguez, E. (2004). Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crops Research, 86, 46–51.

    Article  Google Scholar 

  • García-Mozo, H., Orlandi, F., Galán, C., Fornaciari, M., Romano, B., Ruiz, L., et al. (2009). Olive flowering phenology variation between different cultivars in Spain and Italy: modelling analysis. Theoretical and Applied Climatology, 95, 385–395.

    Article  Google Scholar 

  • Hackett, W. P., & Hartmann, H. T. (1964). Inflorescence formation in olive as influences by low temperature, photoperiod, and leaf area. Botanical Gazette, 125, 65–72.

    Article  Google Scholar 

  • Higgins, S. I., & Richardson, M. (1999). Predicting plant migration rates in a changing world: the role of long-distance dispersal. American Naturalist, 153, 464–475.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore-trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (Eds.) Cambridge University Press, Cambridge, UK, 7–22.

  • Jaagus, J., & Ahas, R. (2000). Space-time variations of climatic seasons and their correlation with the phenological development of nature in Estonia. Climate Research, 15(3), 207–219.

    Article  Google Scholar 

  • Jato, M. V., Frenguelli, G., Rodrìguez, F. J., & Aira, M. J. (2000). Temperature requirements of Alnus pollen in Spain and Italy (1994–1998). Grana, 39, 240–245.

    Article  Google Scholar 

  • Menzel, A., Estrella, N., & Fabian, P. (2001). Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Global Change Biology, 7, 657–666.

    Article  Google Scholar 

  • Neilson, P. R., Pitelka, L. F., Solomon, A. M., Nathan, R., Midgley, G. F., Fragoso, J. M. V., et al. (2005). Forecasting Regional to global plant migration in response to climate change. BioScience, 55(9), 749–759.

    Article  Google Scholar 

  • Orlandi, F., Ferranti, F., Romano, B., & Fornaciari, M. (2003). Olive pollination: flowering and pollen of two cultivars of Olea europaea. New Zealand Journal of Crop and Horticultural Science, 31, 159–168.

    Google Scholar 

  • Orlandi, F., Romano, B., & Fornaciari, M. (2005a). Relationship between flowering and heat units to analyze crop efficiency of olive cultivars located in southern Italy. Hortscience, 40(1), 64–68.

    Google Scholar 

  • Orlandi, F., Vazquez-Ezquerra, L., Ruga, L., Bonofiglio, T., Fornaciari, M., Garcia-Mozo, H., et al. (2005b). Bioclimatic requirements for olive flowering in two mediterranean regions located at the same latitude (Andalucia, Spain and Sicily, Italy). Annals of Agriculture and Environmental Medicine, 12, 47–52.

    Google Scholar 

  • Osborne, C. P., Chuine, I., Viner, D., & Woodward, F. I. (2000). Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 23, 701–710.

    Article  Google Scholar 

  • Pannelli, G., Alfei, B., D’Ambrosio, A., Rosati, S., & Fagiani, F. (2000). Varietà di olivo in Umbria. Perugia (Italy): Editrice Pliniana.

    Google Scholar 

  • Peñuelas, J., & Filella, I. (2001). Phenology: Response to a warming world. Science, 294, 793–795.

    Article  Google Scholar 

  • Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the mediterranean region. Global Change Biology, 8, 531–544.

    Article  Google Scholar 

  • Ribeiro, H., Cunha, M., & Abreu, I. (2005). Airborne pollen of Olea in five regions of Portugal. Annals of Agriculture and Environmental Medicine, 12, 317–320.

    Google Scholar 

  • Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. Hort Science, 9, 331–332.

    Google Scholar 

  • Rodríguez-Rajo, F. J., Dacosta, N., & Jato, V. (2004). Airborne olive pollen in Vigo (Northwest Spain): a survey to forecast the onset and daily concentrations of the pollen season. Grana, 43, 101–110.

    Article  Google Scholar 

  • Schwartz, M. D., Ahas, R., & Aasa, A. (2006). Onset of spring starting earlier across the northern Hemisphere. Global Change Biology, 12(2), 343–351.

    Article  Google Scholar 

  • Schwartz, M. D., & Chen, X. (2002). Examining the onset of spring in China. Climate Research, 21, 157–164.

    Article  Google Scholar 

  • Schwartz, M. D., & Reiter, B. E. (2000). Changes in North American spring. International Journal of Climatology, 20(8), 929–932.

    Article  Google Scholar 

  • Sparks, T. H., Jeffre, E. P., & Jeffre, C. E. (2000). An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44, 82–87.

    Article  CAS  Google Scholar 

  • Stefanescu, C., Peñuelas, J., & Filella, I. (2003). Effects of climatic change on the phenology of butterflies in the northwest mediterranean basin. Global Change Biology, 9, 1494–1506.

    Article  Google Scholar 

  • Teranishi, H., Kenda, Y., Katoh, T., Kasuya, M., Oura, E., & Taira, H. (2000). Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research, 14, 65–70.

    Article  Google Scholar 

  • Williams, T. A., & Abberton, M. T. (2004). Earlier flowering between 1962 and 2002 in agricultural varieties of white clover. Oecologia, 138(1), 122–126.

    Article  CAS  Google Scholar 

  • Zhao, T., & Schwartz, M. D. (2003). Examining the onset of spring in Wisconsin. Climate Research, 24, 59–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Orlandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonofiglio, T., Orlandi, F., Sgromo, C. et al. Evidences of olive pollination date variations in relation to spring temperature trends. Aerobiologia 25, 227–237 (2009). https://doi.org/10.1007/s10453-009-9128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-009-9128-4

Keywords

Navigation