Skip to main content

Advertisement

Log in

Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Phenology data are sensitive data to identify how plants are adapted to local climate and how they respond to climatic changes. Modeling flowering phenology allows us to identify the meteorological variables determining the reproductive cycle. Phenology of temperate of woody plants is assumed to be locally adapted to climate. Nevertheless, recent research shows that local adaptation may not be an important constraint in predicting phenological responses. We analyzed variations in flowering dates of Olea europaea L. at different sites of Spain and Italy, testing for a genetic differentiation of flowering phenology among olive varieties to estimate whether local modeling is necessary for olive or not. We build models for the onset and peak dates flowering in different sites of Andalusia and Puglia. Process-based phenological models using temperature as input variable and photoperiod as the threshold date to start temperature accumulation were developed to predict both dates. Our results confirm and update previous results that indicated an advance in olive onset dates. The results indicate that both internal and external validity were higher in the models that used the photoperiod as an indicator to start to cumulate temperature. The use of the unified model for modeling the start and peak dates in the different localities provides standardized results for the comparative study. The use of regional models grouping localities by varieties and climate similarities indicate that local adaptation would not be an important factor in predicting olive phenological responses face to the global temperature increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad QK (ed) (2001) Climate Change 2001: impacts, adaptation, and vulnerability. In: Summary for Policymakers, (ed. IPCC Working Group II)

  • Alcalá R, Barranco D (1992) Prediction of flowering time in olive for the Cordoba olive collection. HortScience 27(11):1205–1207

    Google Scholar 

  • Arianoutsou FM, Diamantopoulos J (1985) Comparative phenology of dominant plant species in maquis and phrygana ecosystems in Greece. Phyton 25(1):77–85

    Google Scholar 

  • Barranco D, Ruiz N, Gomez-del Campo M (2005) Frost tolerance of eight olive cultivars. HortScience 40(3):558–560

    Google Scholar 

  • Bartolozzi F, Fontanazza G (1999) Assessment of frost tolerance in olive (Olea europaea L.). Sci Hortic 81(3):309–319

    Article  Google Scholar 

  • Bousquet J, Cheliak WM, Lalonde M (1987) Genetic diversity within and among 11 juvenile populations of green alder (Alnus crispa) in Canada. Physiol Plant 70:311–318

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau D (1998) Fitting models predicting the dates of flowering of temperate-zone tree species using simulating annealing. Plant Cell Environ 21:455–466

    Article  Google Scholar 

  • Chuine I, Belmonte J, Mignot A (2000) A modelling analysis of the genetic variation of phenology between tree populations. J Ecol 80:561–570

    Article  Google Scholar 

  • Correia O, Martins AC, Catarino F (1992) Comparative phenology and seasonal foliar nitrogen variation in Mediterranean species of Portugal. Ecol Mediterr 7–18

  • De Lillis M, Fontanella A (1992) Comparative phenology and growth in different species of the Mediterranean maquis. Vegetatio 99/100:83–96

    Article  Google Scholar 

  • De Melo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ (2004) Modelling olive flowering date using chilling for dormancy release and thermal time. Agric Forest Meteorol 125(1,2):117–127

    Google Scholar 

  • Fornaciari M, Pieroni L, Ciuchi P, Romano B (1998) A regression model for the start of the pollen season in Olea europaea L. Grana 37(2):110–113

    Google Scholar 

  • Frouxa F, Ducrey M, Epron D, Dreyera E (2004) Seasonal variations and acclimation potential of the thermostability of photochemistry in four Mediterranean conifers. Ann Forest Sci 61:235–241

    Article  Google Scholar 

  • Galán C, Cariñanos P, García-Mozo H, Alcázar P, Domínguez E (2001a) Model for forecasting Olea europaea L. airborne pollen in south-west Andalusia, Spain. Int J Biometeorol 45(2):59–63

    Article  Google Scholar 

  • Galán C, García-Mozo H, Cariñanos P, Alcázar P, Domínguez E (2001b) The role of temperature in the onset of the Olea europaea L. pollen season in southwestern Spain. Int J Biometeorol

    Article  Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188

    Article  Google Scholar 

  • García-Mozo H, Galán C, Gómez-Casero MT, Dominguez E (2000) A comparative study of different temperature accumulation methods for predicting the Quercus pollen season start in Córdoba (southwest Spain). Grana 39:194–199

    Article  Google Scholar 

  • García-Mozo H, Galán C, Aira MJ, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez AM, Rodriguez FJ, Trigo MM, Dominguez-Vilches E (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric Forest Meteorol 110:247–257.

    Article  Google Scholar 

  • García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, Domínguez-Vilches E (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224

    Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21(1):1–11

    Article  Google Scholar 

  • Hanninen H (1990) Modelling bud dormancy release in trees from cool and temperate regions. Acta Forest Fenn 213:1–47

    Google Scholar 

  • Hirst J (1952) An automatic volumetric spore-trap. Ann Appl Biol 36:257–265

    Article  Google Scholar 

  • Kummerow J, Montenegro G, Krause D (1981) Biomass, phenology and growth. In: Miller PC (ed) Resource use by Chaparral and Matorral. Berlin Heidelberg New York, pp 69–96

    Google Scholar 

  • Lambs L, Loubiat M, Girel J, Tissier J, Peltier JP, Marigo G (2006) Survival and acclimatation of Populus nigra to drier conditions after damming of an alpine river, southeast France. Ann Forest Sci 63:377–385

    Article  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems 134(3):279-295

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Menzel A (1999) Phenology as global change bioindicator. Ann Meteorol 39:41–43

    Google Scholar 

  • Menzel A, Tim H, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Ahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976

    Article  Google Scholar 

  • Moll EJ (1987) Phenology of Mediterranean plants in relation to fire season with special reference to the Cape Province South Africa. In: Plant response to stress, Functional analysis in Mediterranean ecosystems. Springer, Berlin Heidelberg New York, pp 489–502

  • Osborne CP, Chuine I, Viner D, Woodward FI (2000) Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23:701–710

    Article  Google Scholar 

  • Parelle J, Roudaut JP, Ducrey M (2006) Light acclimation and photosynthetic response of beech (Fagus sylvatica L.) saplings under artificial shading or natural Mediterranean conditions. Ann Forest Sci 63:257–266

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(2):37–42

    Article  Google Scholar 

  • Recio M, Cabezudo B, Trigo MM, Toro FJ (1997) Accumulative air temperature as a predicting parameter for daily airborne olive pollen (Olea europaea L.) during the prepeak period in Málaga (Western Mediterranean area). Grana 36(1):44–48

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421(2):57–60

    Article  Google Scholar 

  • Sayed A, Badr S, Hudson T, Hartmann T (1972) Flowering response of the olive (Olea europaea l.) to certain growth regulators applied under inductive and non-inductive environments. Bot Gaz 133(4):387–392

    Article  Google Scholar 

  • Schwartz MD (ed) (2003) Phenology: an integrative environmental science. Kluwer, Dordrecht

  • Walther GR (2004) Plants in a warmer world. Perspectives in plant ecology. Evol Sys 6(3):169–185

    Google Scholar 

  • Wesley P, Hackett H, Hartmann T (1964) Inflorescence formation in olive as influenced by low temperature, photoperiod, and leaf area. Bot Gaz 125(1):65–72

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Consejería de Ciencia y Tecnología of the Andalucian Regional Government for lending the support to Dr. Garcia-Mozo in her staying in the Centre National de la Recherce Scientifique (CNRS) de Montpellier (France) and for the project “Modelización y analisis de la influencia de la variación genética en la fenología reproductiva de especies vegetales” (PO6-RNM-02195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Garcia-Mozo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Mozo, H., Orlandi, F., Galan, C. et al. Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis. Theor Appl Climatol 95, 385–395 (2009). https://doi.org/10.1007/s00704-008-0016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-008-0016-6

Keywords

Navigation