Skip to main content
Log in

Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zeng, T., Wu, L.Z., Guo, L.C.: A finite element model for failure analysis of 3D braided composites. Mater. Sci. Eng. A. 366(1), 144–151 (2004)

    Article  Google Scholar 

  2. Dong, J.W., Feng, M.L.: Asymptotic expansion homogenization for simulating progressive damage of 3D braided composites. Compos. Struct. 92(4), 873–882 (2010)

    Article  Google Scholar 

  3. Yu, X.G., Cui, J.Z.: The prediction on mechanical properties of 4-step braided composites via two-scale method. Compos. Sci. Technol. 67(3–4), 471–480 (2007)

    Article  Google Scholar 

  4. Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89, 126–133 (2009)

    Article  Google Scholar 

  5. Lu, Z.X., Xia, B., Yang, Z.Y.: Investigation on the tensile properties of three dimensional full five directional braided composites. Comput. Mater. Sci. 77, 445–455 (2013)

    Article  Google Scholar 

  6. Wang, B.L., Fang, G.D., Liang, J., et al.: Failure locus of 3D four-directional braided composites under biaxial loading. Appl. Compos. Mater. 19(3–4), 529–544 (2012)

    Article  Google Scholar 

  7. Zhang, D.T., Sun, Y., Wang, X.M., et al.: Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading. J. Reinf. Plast. Compos. 34(24), 1989–2005 (2015)

    Article  Google Scholar 

  8. Miravete, A., Bielsa, J.M., Chiminelli, A., et al.: 3D mesomechanical analysis of three-axial braided composite materials. Compos. Sci. Technol. 66, 2954–2964 (2006)

    Article  Google Scholar 

  9. Zhang, C., Li, N., Wang, W.Z., et al.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015)

    Article  Google Scholar 

  10. Wan, Y.M., Wang, Y.J., Gu, B.H.: Finite element prediction of the impact compressive properties of three-dimensional braided composites using multi-scale model. Compos. Struct. 128, 381–394 (2015)

    Article  Google Scholar 

  11. Wang, C., Zhong, Y.C., Adaikalaraj, P.F., et al.: Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J. Mater. Sci. 51, 6002–6018 (2016)

    Article  Google Scholar 

  12. Fang, G.D., Liang, J., Lu, Q., et al.: Effect of interface properties on mechanical behavior of 3D four directional braided composites with large braided angle subjected to uniaxial tension. Appl. Compos. Mater. 18(5), 449–465 (2011)

    Article  Google Scholar 

  13. Lu, Z.X., Wang, C.Y., Xia, B., et al.: Effect of interfacial properties on the uniaxial tensile behavior of three-dimensional braided composites. Comput. Mater. Sci. 79, 547–557 (2013)

    Article  Google Scholar 

  14. Xu, Y.J., You, T., Du, C.L.: An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer composites. Compos. Struct. 122, 308–315 (2015)

    Article  Google Scholar 

  15. Sharma, R., Mahajan, P., Mittal, R.K.: Elastic modulus of 3D carbon/carbon composite using image-based finite element simulations and experiments. Compos. Struct. 98, 69–78 (2013)

    Article  Google Scholar 

  16. Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms. Compos. Sci. Technol. 59(3), 391–404 (1999)

    Article  Google Scholar 

  17. Xu, K., Xu, X.W.: On the microstructure model of four-step 3D rectangular braided composites. Acta. Mater. Compos. Sin. 23(5), 154–160 (2006)

    Google Scholar 

  18. Hashin, Z.: Failure criteria for unidirectional fiber composite. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  19. Murakami, S.: Mechanical modeling of material damage. ASME J Appl. Mech. 55, 280–286 (1988)

    Article  Google Scholar 

  20. Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber reinforced materials. Compos. Part A. 38(11), 2333–2341 (2007)

    Article  Google Scholar 

  21. Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composite materials. Compos. Sci. Technol. 63(3–4), 507–516 (2003)

    Article  Google Scholar 

  22. Camanho, P. P., Davila, C. G..: Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737 (2002)

  23. Alfano, G., Sacco, E.: Combining interface damage and friction in a cohesive-zone model. Int. J. Numer. Methods Eng. 68, 524–582 (2006)

    Article  Google Scholar 

  24. Xia, Z.H., Zhang, Y.F., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003)

    Article  Google Scholar 

  25. Chamis, C.C.: Mechanics of composites materials: past, present and future. J. Compos. Technol. Res. 11(1), 3–14 (1989)

    Article  Google Scholar 

  26. Xiu, Y.S.: Numerical Analysis of Mechanical Properties of 3D four-Step Braided Composites. Tianjin Polytechnic University; China, Tianjin (2001)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (NS2016015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Chunjian Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Mao, C. & Zhou, Y. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension. Appl Compos Mater 24, 1179–1199 (2017). https://doi.org/10.1007/s10443-016-9579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9579-z

Keywords

Navigation