Skip to main content
Log in

Effect of Interface Properties on Mechanical Behavior of 3D Four-Directional Braided Composites with Large Braid Angle Subjected to Uniaxial Tension

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A Representative Volume Cell (RVC) chosen to epitomize the entire three dimensional four-directional braided composites is investigated to evaluate the mechanical behavior of the material by computational micromechanics. In addition to including several damage modes of braid yarn and matrix within the braided composites, the numerical model also takes into account interface damage mode by using a Cohesive Zone Model (CZM). A parametrical study is conducted to evaluate the influence of interface properties on the macro stress-strain curve and the interaction of different failure modes of the braided composites under uniaxial tensile loading. The interface damage evolution of the braided composites with large braid angle is also provided further. Preliminary results indicate that the interface damage, which is one of the key factors to cause the nonlinearity of the stress-strain relationship, can decrease the elastic modulus but not obviously control the ultimate strength of the braided composites with large braid angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Miravete, A.: 3-D textile reinforcements in composite materials. Wood head Publishing Ltd, UK (1999)

    Book  Google Scholar 

  2. Byun, J., Chou, T.: Process-microstructure relationships of 2-step and 4-step braided composites. Compos. Sci. Technol. 56, 235–251 (1996)

    Article  Google Scholar 

  3. Quek, S.C., Waas, A.M., Shahwan, K.W., Agaram, V.: Compressive response and failure of braided textile composites: Part 2—computations. Int. J. Non-linear Mech. 39(4), 649–663 (2004)

    Article  Google Scholar 

  4. Salvi, A.G., Waas, A.M., Caliskan, A.: Rate dependent compressive response of 2D triaxially braided carbon fiber composites and the effects of resin on the interfacial shear strength. Compos. A 40(1), 19–27 (2009)

    Article  Google Scholar 

  5. Song, S., Waas, A.M., Shahwan, K.W., Xiao, X., Faruque, O.: Braided textile composites under compressive loads: Modeling the response, strength and degradation. Compos. Sci. Technol. 67(15–16), 3059–3070 (2007)

    Article  CAS  Google Scholar 

  6. Miravete, A., Bielsa, J.M., Chiminelli, A., Cuartero, J., Serrano, S., Tolosana, N., Guzman de Villoria, R.: 3D mesomechanical analysis of three-axial braided composite materials. Compos. Sci. Technol. 66, 2954–2964 (2006)

    Article  CAS  Google Scholar 

  7. Aubard, X., Cluzel, C., Guitard, L., Ladevèze, P.: Damage modeling at two scales for 4D carbon/carbon composites. Compos. Struct. 78, 83–91 (2000)

    Article  Google Scholar 

  8. González, C., LLorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling. Compos. Sci. Technol. 67, 2795–2806 (2007)

    Article  Google Scholar 

  9. Miravete, A., Jimenez, M.A.: Application of the finite element method to prediction of onset of delamination growth. Appl. Mech. Rev. 55(2), 89–105 (2002)

    Article  Google Scholar 

  10. Krueger, R.: The virtual crack closure technique: history, approach and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

  11. Xie, D., Biggers, S.B.: Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Eng. Fract. Mech. 73, 771–785 (2006)

    Article  Google Scholar 

  12. Xie, D., Biggers, S.B.: Calculation of transient strain energy release rates under impact loading based on the virtual crack closure technique. Int. J. Impact Eng. 34, 1047–1060 (2007)

    Article  CAS  Google Scholar 

  13. Needleman, A.: A continuum model for void nucleation by interfacial debonding. Int. J. Solids Struct. 54, 525–531 (1987)

    Google Scholar 

  14. Needleman, A.: An analysis of decohesion along an imperfect interface. Int. J. Fract. 42, 21–40 (1990)

    Article  Google Scholar 

  15. Needleman, A.: Micromechanical modeling of interfacial decohesion. Ultramicroscopy 40, 203–214 (1992)

    Article  Google Scholar 

  16. Tvergaard, V.: Effect of fiber debonding in a whisker-reinforce metal. Mater. Sci. Eng. A125, 203–213 (1990)

    CAS  Google Scholar 

  17. Allen, D.H., Jones, R.H., Boyd, J.G.: Micromechanical analysis of a continuous fiber metal matrix composite including the effects of matrix viscoplasticity and evolving damage. J. Mech. Phys. Solids 42, 502–529 (1994)

    Article  Google Scholar 

  18. Swaminathan, S., Pagano, N.J., Ghosh, S.: Analysis of interfacial debonding in three-dimensional composite microstructures. ASME 128, 96–106 (2006)

    CAS  Google Scholar 

  19. Jiang, W.G., Hallett, S.R., Green, B.G., Wisnom, M.R.: A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int. J. Numer. Methods Eng. 69, 1982–1995 (2007)

    Article  Google Scholar 

  20. Balzani, C., Wagner, W.: An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates. Eng. Fract. Mech. 75, 2597–2615 (2008)

    Article  Google Scholar 

  21. Xie, D., Waas, A.M.: Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng. Fract. Mech. 73, 1783–1796 (2006)

    Article  Google Scholar 

  22. Harper, P.W., Hallett, S.R.: A fatigue degradation law for cohesive interface elements—Development and application to composite materials. Int. J. Fatigue (2010). doi:10.1016/j.ijfatigue.2010.04.006

    Google Scholar 

  23. Abaqus: Users’ Manual. ABAQUS Inc (2006)

  24. Duvaut, G., Lions, J.L.: Les inequations en me canique et en physique. Dunod, Paris (1972)

    Google Scholar 

  25. Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89(1), 126–133 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (N10772060, 90916027), Hei Longjiang Province Outstanding Youth Foundation of China (JC 2006-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, G., Liang, J., Wang, B. et al. Effect of Interface Properties on Mechanical Behavior of 3D Four-Directional Braided Composites with Large Braid Angle Subjected to Uniaxial Tension. Appl Compos Mater 18, 449–465 (2011). https://doi.org/10.1007/s10443-010-9175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9175-6

Keywords

Navigation