Skip to main content
Log in

An Insight into the Mechanistic Role of the Common Carotid Artery on the Hemodynamics at the Carotid Bifurcation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The rationale for this study lies in the well-known predilection for vascular disease of the carotid bifurcation, attributed to an altered shear stress distribution at the luminal surface and mitigated by helical fluid structures establishing inside the bifurcation. Here we investigate the mechanistic role played by the common carotid artery (CCA) in promoting complex intravascular flow and in influencing the hemodynamics at the distal carotid bifurcation. Fifty-five image-based computational hemodynamic models of eleven right carotid geometries were reconstructed from its brachiocephalic origin to above the bifurcation to assess how five different CCA reconstruction length affects intravascular fluid structures entering the bifurcation. A quantitative description of helical flow is adopted, in parallel to the description of disturbed shear at the bifurcation luminal surface. Our findings support the hypothesis that helical flow in CCA might reduce the likelihood of flow disturbances at the bifurcation. This confirms the physiological role of CCA in transporting and enforcing helical flow structures into the bifurcation, giving further contribution to the helicity-driven suppression of disturbed shear. A quantitative analysis of CCA geometry highlights the beneficial effect of proximal CCA curvature on helical flow and shows the complex interlacement among CCA geometry, helical flow, and disturbed shear at the bifurcation. Since helicity-based descriptors and geometric descriptors relative to the bifurcation have been shown to be significant predictors of disturbed shear, in principle they may be augmented by factors related to CCA geometry and hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alastruey, J., J. H. Siggers, V. Peiffer, D. J. Doorly, and S. J. Sherwin. Reducing the data: analysis of the role of vascular geometry on blood flow patterns in curved vessels. Phys. Fluids 24:031902, 2012.

    Article  Google Scholar 

  2. Aristokleous, N., I. Seimenis, G. C. Georgiou, Y. Papaharilaou, B. C. Brott, A. Nicolaides, and A. S. Anayiotos. Impact of head rotation on the individualized common carotid flow and carotid bifurcation hemodynamics. IEEE J. Biomed. Health Inform. 18(3):783–789, 2014.

    Article  PubMed  Google Scholar 

  3. Balbi, S., S. Roatta, and C. Guiot. Curvature affects Doppler investigation of vessels: implication for clinical practice. Ultrasound Med. Biol. 31:65–77, 2005.

    Article  Google Scholar 

  4. Bijari, P. B., L. Antiga, D. Gallo, B. A. Wasserman, and D. A. Steinman. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables. J. Biomech. 45:1632–1637, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Boussel, L., A. Serusclat, M. R. Skilton, F. Vincent, S. Bernard, P. Moulin, D. Saloner, and P. C. Douek. The reliability of high resolution MRI in the measurement of early stage carotid wall thickening. J. Cardiovasc. Magn. Reson. 9:771–779, 2007.

    Article  PubMed  Google Scholar 

  6. Caro, C. G., C. L. Dumoulin, J. M. Graham, K. H. Parker, and S. P. Souza. Secondary flow in the human common carotid artery imaged by MR angiography. J. Biomech. Eng. 114(1):147–149, 1992.

    Article  CAS  PubMed  Google Scholar 

  7. Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R Soc. Lond. A 452:185–197, 1996.

    Article  Google Scholar 

  8. Dean, W. R. Fluid motion in a curved channel. Proc. Roy. Soc. A 121:402–420, 1927.

    Article  Google Scholar 

  9. Ford, M. D., Y. J. Xie, B. A. Wasserman, and D. A. Steinman. Is flow in the common carotid artery fully developed? Physiol. Meas. 29(11):1335–1349, 2008.

    Article  PubMed  Google Scholar 

  10. Gallo, D., D. A. Steinman, P. B. Bijari, and U. Morbiducci. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45:2398–2404, 2012.

    Article  PubMed  Google Scholar 

  11. Germano, M. On the effect of torsion on flow. J. Fluid Mech. 125:1–8, 1982.

    Article  Google Scholar 

  12. Germano, M. The Dean equations extended to a helical pipe flow. J. Fluid Mech. 203:289–305, 1989.

    Article  Google Scholar 

  13. Himburg, H. A., D. M. Grzybowski, A. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286(5):H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  14. Hoi, Y., B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. Effect of common carotid artery inlet length on normal carotid bifurcation hemodynamics. J. Biomech. Eng. 132:121008, 2010.

    Article  PubMed  Google Scholar 

  15. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5(3):293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. W., and D. A. Steinman. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2):273–278, 2007.

    Article  PubMed  Google Scholar 

  17. Lee, S. W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347, 2008.

    Article  PubMed  Google Scholar 

  18. Lee, S. W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131(6):061013, 2009.

    Article  PubMed  Google Scholar 

  19. Liu, S., and J. H. Masliyah. Axially invariant laminar flow in helical pipes with a finite pitch. J. Fluid Mech. 251:315–353, 1993.

    Article  CAS  Google Scholar 

  20. Liu, X., F. Pu, Y. Fan, X. Deng, D. Li, and S. Li. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297:H163–H170, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38(3):917–926, 2010.

    Article  PubMed  Google Scholar 

  22. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Manbachi, A., Y. Hoi, B. A. Wasserman, E. G. Lakatta, and D. A. Steinman. On the shape of the common carotid artery, with implications for blood velocity profiles. Physiol. Meas. 32(12):1885–1897, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Marzo, A., P. Singh, P. Reymond, N. Stergiopulos, U. Patel, and R. Hose. Influence of inlet boundary conditions on the local hemodynamics of intracranial aneurysms. Comput. Methods Biomech. Biomed. Eng. 12(4):431–444, 2009.

    Article  Google Scholar 

  25. Minev, P. D., and C. R. Ethier. A characteristic/finite element algorithm for the 3-D Navier-Stokes equations using unstructured grids. Comput. Methods Appl. Mech. Eng. 178:39–50, 1998.

    Article  Google Scholar 

  26. Moffatt, H. K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35(1):17–29, 1969.

    Article  Google Scholar 

  27. Moffatt, H. K., and A. Tsinober. Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24:281–312, 1992.

    Article  Google Scholar 

  28. Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis in aortocoronary bypass. A numeric study. J. Biomech. 40:519–534, 2007.

    Article  PubMed  Google Scholar 

  29. Morbiducci, U., D. Gallo, R. Ponzini, D. Massai, L. Antiga, A. Redaelli, and F. M. Montevecchi. Quantitative analysis of bulk flow in image-based haemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann. Biomed. Eng. 38(12):3688–3705, 2010.

    Article  PubMed  Google Scholar 

  30. Morbiducci, U., D. Gallo, D. Massai, R. Ponzini, M. A. Deriu, L. Antiga, A. Redaelli, and F. M. Montevecchi. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J. Biomech. 44:2427–2438, 2011.

    Article  PubMed  Google Scholar 

  31. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.

    Article  PubMed  Google Scholar 

  32. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in human aorta. J. Biomech. 46(1):102–109, 2013.

    Article  PubMed  Google Scholar 

  33. Moyle, K. R., L. Antiga, and D. A. Steinman. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J. Biomech. Eng. 128(3):371–379, 2006.

    Article  PubMed  Google Scholar 

  34. Myers, J. G., J. A. Moore, M. Ohja, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in human right coronary artery. Ann. Biomed. Eng. 29(2):109–120, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Mynard, J. P., B. A. Wasserman, and D. A. Steinman. Errors in the estimation of wall shear stress by maximum Doppler velocity. Atherosclerosis 227(2):259–266, 2013.

    Article  CAS  PubMed  Google Scholar 

  36. Pantos, J., E. Efstathopoulos, and D. G. Katritsis. Vascular wall shear stress in clinical practice. Curr. Vasc. Pharmacol. 5:113–119, 2007.

    Article  CAS  PubMed  Google Scholar 

  37. Papaharilaou, Y., N. Aristokleous, I. Seimenis, M. I. Khozeymeh, G. C. Georgiou, B. C. Briott, E. Eracleous, and A. S. Anayiotos. Effect of head posture on the healthy human carotid bifurcation hemodynamics. Med. Biol. Eng. Comput. 51(1–2):207–218, 2013.

    Article  PubMed  Google Scholar 

  38. Perktold, K., E. Thurner, and T. Kenner. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med. Biol. Eng. Comput. 32(1):19–26, 1994.

    Article  CAS  PubMed  Google Scholar 

  39. Ponzini, R., C. Vergara, G. Rizzo, A. Veneziani, A. Roghi, A. Vanzulli, O. Parodi, and A. Redaelli. Womersley number-based estimates of blood flow rate in Doppler analysis: in vivo validation by means of phase-contrast MRI. IEEE Trans. Biomed. Eng. 57(7):1807–1815, 2010.

    Article  PubMed  Google Scholar 

  40. Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani. Efficient estimation of three-dimensional curves and their derivatives by free-knot regression splines, applied to the analysis of inner carotid artery centrelines. Appl. Statist. 58(3):285–306, 2009.

    Google Scholar 

  41. Sluimer, J. C., J. M. Gasc, J. L. van Wanroij, N. Kisters, M. Groeneweg, M. D. Sollewijn Gelpke, J. P. Cleutjens, L. H. van den Akker, P. Corvol, B. G. Wouters, M. J. Daemen, and A. P. Bijnens. Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J. Am. Coll. Cardiol. 51:1258–1265, 2008.

    Article  CAS  PubMed  Google Scholar 

  42. Stonebridge, P. A., P. R. Hoskins, P. L. Allan, and J. F. Belch. Spiral laminar flow in vivo. Clin. Sci. (Lond.) 91:17–21, 1996.

    CAS  Google Scholar 

  43. Thomas, J. B., L. Antiga, S. L. Che, J. S. Milner, D. A. Hangan-Steinman, J. D. Spence, B. K. Rutt, and D. A. Steinman. Variation in the carotid bifurcation geometry of young versus older adults: implications for geometric risk of atherosclerosis. Stroke 36:2450–2456, 2005.

    Article  PubMed  Google Scholar 

  44. Tortoli, P., V. Michelassi, G. Bambi, F. Guidi, and D. Righi. Interaction between secondary velocities, flow pulsation and vessel morphology in the common carotid artery. Ultrasound Med. Biol. 29:407–415, 2003.

    Article  PubMed  Google Scholar 

  45. Wake, A. K., J. N. Oshinski, A. R. Tannenbaum, and D. P. Giddens. Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation. J. Biomech. Eng. 131(2):021013, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Zhou, S., and X. Shen. Spatially adaptive regression splines and accurate knot selection schemes. JASA 96(453):247–259, 2001.

    Article  Google Scholar 

Download references

Conflict of interest

All authors declare that they have no financial and personal relationships with other people or organizations that could have inappropriately influenced (biased) the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Morbiducci.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, D., Steinman, D.A. & Morbiducci, U. An Insight into the Mechanistic Role of the Common Carotid Artery on the Hemodynamics at the Carotid Bifurcation. Ann Biomed Eng 43, 68–81 (2015). https://doi.org/10.1007/s10439-014-1119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1119-0

Keywords

Navigation