Skip to main content
Log in

Physiological Significance of Helical Flow in the Arterial System and its Potential Clinical Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Helical flow in the human aorta is possibly a typical example of ‘form follows function’ in the vascular system. The helical blood flow may provide guaranties for the inner surface of the ascending aortic wall to get smooth and even washing by the blood so that atherosclerotic plaques can hardly form in the area of the ascending aorta. It has been documented that the phenomenon of helical flow of blood is not just localized in the ascending aorta, it also exists in several large arteries and veins as well. Preliminary studies demonstrated the widely existing helical flow might play positive physiological roles in facilitating blood flow transport, suppressing disturbed blood flow, preventing the accumulation of atherogenic low density lipoproteins on the luminal surfaces of arteries, enhancing oxygen transport from the blood to the arterial wall and reducing the adhesion of blood cells on the arterial surface. These roles of helical blood flow may lessen the burden of arteries and protect the arteries from the pathology of atherosclerosis, thrombosis, and intimal hyperplasia. The great development of time-resolved three-dimensional phase contrast MRI (flow-sensitive 4D-MRI) and the advent of dimensionless indices such as helical flow index proposed to characterize helical flow make clinic quantification of the helical flow in the human large arteries possible. Moreover, researchers probed into the possibility to apply the mechanism of helical flow to the design of vascular interventions to reduce thrombus formation and intimal hyperplasia caused by abnormal flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ali, S. Pressure drop correlations for flow through regular helical coil tubes. Fluid Dyn. Res. 28:295–310, 2001.

    Google Scholar 

  2. Bachler, P., N. Pinochet, J. Sotelo, G. Crelier, P. Irarrazaval, C. Tejos, and S. Uribe. Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn. Reson. Imaging 31:178–188, 2013.

    PubMed  Google Scholar 

  3. Barker A. J., P. van Ooij, K. Bandi, J. Garcia, M. Albaghdadi, P. McCarthy, R. O. Bonow, J. Carr, J. Collins, S. C. Malaisrie, and M. Markl. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 2013.

  4. Bechara, C. F. Comparing short and midterm Infrainguinal bypass patency rates between two ePTFE prosthetic grafts: spiral laminar flow and propaten. Vasc. Dis. Manag. 11:E54–E58, 2014.

    Google Scholar 

  5. Bogren, H. G., and M. H. Buonocore. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J. Magn. Reson. Imaging 10:861–869, 1999.

    CAS  PubMed  Google Scholar 

  6. Burk, J., P. Blanke, Z. Stankovic, A. Barker, M. Russe, J. Geiger, A. Frydrychowicz, M. Langer, and M. Markl. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14:84, 2012.

    PubMed Central  PubMed  Google Scholar 

  7. Caro, C. G., N. J. Cheshire, and N. Watkins. Preliminary comparative study of small amplitude helical and conventional ePTFE arteriovenous shunts in pigs. J. R. Soc. Interface 2:261–266, 2005.

    PubMed Central  PubMed  Google Scholar 

  8. Caro, C. G., D. J. Doorly, and M. Tarnawski. Non-planar curvature and branching of arteries and non-planar-type flow. Proc. R. Soc. Lond. A 452:185–197, 1996.

    Google Scholar 

  9. Caro, C. G., A. Seneviratne, K. B. Heraty, C. Monaco, M. G. Burke, R. Krams, C. C. Chang, P. Gilson, and G. Coppola. Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: influence of intraluminal flow. J. R. Soc. Interface 11:20130578, 2014.

    Google Scholar 

  10. Chen, Z., F. Zhan, Y. Fan, and X. Deng. A novel way to reduce thrombus build-up in vena cava filters. Catheter. Cardiovasc. Interv. 78:792–798, 2011.

    PubMed  Google Scholar 

  11. Chen, Z. S., Y. B. Fan, X. Y. Deng, and Z. P. Xu. Swirling flow can suppress flow disturbances in endovascular stents: a numerical study. ASAIO J. 55:543–549, 2009.

    PubMed  Google Scholar 

  12. Chen, Z. S., X. W. Zhang, and X. Y. Deng. Swirling flow can suppress monocyte adhesion in the flow disturbance zones of the endovascular stent. Biorheology 49:341–352, 2012.

    CAS  PubMed  Google Scholar 

  13. Chien, S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003.

    CAS  PubMed  Google Scholar 

  14. Chiu, C. J., J. Terzis, and M. L. MacRae. Replacement of superior vena cava with the spiral composite vein graft. A versatile technique. Ann. Thorac. Surg. 17:555–560, 1974.

    CAS  PubMed  Google Scholar 

  15. Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.

    PubMed  Google Scholar 

  16. Cookson, A. N., D. J. Doorly, and S. J. Sherwin. Mixing through stirring of steady flow in small amplitude helical tubes. Ann. Biomed. Eng. 37:710–721, 2009.

    CAS  PubMed  Google Scholar 

  17. Coppola, G., and C. Caro. Oxygen mass transfer in a model three-dimensional artery. J. R. Soc. Interface 5:1067–1075, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Coppola, G., and C. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6:519–528, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Deng, X., Y. Marois, T. How, Y. Merhi, M. King, R. Guidoin, and T. Karino. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries. J. Vasc. Surg. 21:135–145, 1995.

    CAS  PubMed  Google Scholar 

  20. Ding, Z., Y. Fan, X. Deng, F. Zhan, and H. Kang. Effect of swirling flow on the uptakes of native and oxidized LDLs in a straight segment of the rabbit thoracic aorta. Exp. Biol. Med. (Maywood) 235:506–513, 2010.

    CAS  Google Scholar 

  21. Doty, J. R., J. H. Flores, and D. B. Doty. Superior vena cava obstruction: bypass using spiral vein graft. Ann. Thorac. Surg. 67:1111–1116, 1999.

    CAS  PubMed  Google Scholar 

  22. Duraiswamy, N., R. T. Schoephoerster, M. R. Moreno, and J. E. Moore. Stented artery flow patterns and their effects on the artery wall. Annu. Rev. Fluid Mech. 39:357–382, 2007.

    Google Scholar 

  23. Endo, S., Y. Sohara, and T. Karino. Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole. Heart Vessels 11:180–191, 1996.

    CAS  PubMed  Google Scholar 

  24. Ethier, C. R. Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30:461–471, 2002.

    PubMed  Google Scholar 

  25. Fan, Y. B., Z. P. Xu, W. T. Jiang, X. Y. Deng, K. Wang, and A. Q. Sun. An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor. J. Biomech. 41:2498–2505, 2008.

    PubMed  Google Scholar 

  26. Frazin, L. J., G. Lanza, M. Vonesh, F. Khasho, C. Spitzzeri, S. McGee, D. Mehlman, K. B. Chandran, J. Talano, and D. McPherson. Functional chiral asymmetry in descending thoracic aorta. Circulation 82:1985–1994, 1990.

    CAS  PubMed  Google Scholar 

  27. Frazin, L. J., M. J. Vonesh, K. B. Chandran, T. Shipkowitz, A. S. Yaacoub, and D. D. McPherson. Confirmation and initial documentation of thoracic and abdominal aortic helical flow. An ultrasound study. ASAIO J. 42:951–956, 1996.

    CAS  PubMed  Google Scholar 

  28. Frydrychowicz, A., C. J. Francois, and P. A. Turski. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur. J. Radiol. 80:24–35, 2011.

    PubMed Central  PubMed  Google Scholar 

  29. Frydrychowicz, A., M. Markl, D. Hirtler, A. Harloff, C. Schlensak, J. Geiger, B. Stiller, and R. Arnold. Aortic hemodynamics in patients with and without repair of aortic coarctation in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Invest. Radiol. 46:317–325, 2011.

    PubMed  Google Scholar 

  30. Frydrychowicz, A., A. F. Stalder, M. F. Russe, J. Bock, S. Bauer, A. Harloff, A. Berger, M. Langer, J. Hennig, and M. Markl. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J. Magn. Reson. Imaging 30:77–84, 2009.

    PubMed  Google Scholar 

  31. Frydrychowicz, A., J. T. Winterer, M. Zaitsev, B. Jung, J. Hennig, M. Langer, and M. Markl. Visualization of iliac and proximal femoral artery hemodynamics using time-resolved 3D phase contrast MRI at 3T. J. Magn. Reson. Imaging 25:1085–1092, 2007.

    PubMed  Google Scholar 

  32. Gallo, D., G. De Santis, F. Negri, D. Tresoldi, R. Ponzini, D. Massai, M. A. Deriu, P. Segers, B. Verhegghe, G. Rizzo, and U. Morbiducci. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow. Ann. Biomed. Eng. 40:729–741, 2012.

    CAS  PubMed  Google Scholar 

  33. Gallo, D., D. A. Steinman, P. B. Bijari, and U. Morbiducci. Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J. Biomech. 45:2398–2404, 2012.

    PubMed  Google Scholar 

  34. Grigioni, M., C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, and V. Barbaro. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J. Biomech. 38:1375–1386, 2005.

    PubMed  Google Scholar 

  35. Gulan, U., B. Luthi, M. Holzner, A. Liberzon, A. Tsinober, and W. Kinzelbach. Experimental study of aortic flow in the ascending aorta via particle tracking velocimetry. Exp. Fluids 53:1469–1485, 2012.

    Google Scholar 

  36. Ha, H., and S. J. Lee. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model. Med. Eng. Phys. 36:119–128, 2014.

    PubMed  Google Scholar 

  37. Hope, M., S. Wrenn, and P. Dyverfeldt. Clinical applications of aortic 4D flow imaging. Curr. Cardiovasc. Imaging Rep. 6:128–139, 2013.

    Google Scholar 

  38. Hope, M. D., T. A. Hope, S. E. Crook, K. G. Ordovas, T. H. Urbania, M. T. Alley, and C. B. Higgins. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc. Imaging 4:781–787, 2011.

    PubMed  Google Scholar 

  39. Hope, M. D., T. A. Hope, A. K. Meadows, K. G. Ordovas, T. H. Urbania, M. T. Alley, and C. B. Higgins. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61, 2010.

    PubMed  Google Scholar 

  40. Houston, J. G., S. J. Gandy, W. Milne, J. B. Dick, J. J. Belch, and P. A. Stonebridge. Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol. Dial. Transp. 19:1786–1791, 2004.

    Google Scholar 

  41. Houston, J. G., S. J. Gandy, D. G. Sheppard, J. B. Dick, J. J. Belch, and P. A. Stonebridge. Two-dimensional flow quantitative MRI of aortic arch blood flow patterns: effect of age, sex, and presence of carotid atheromatous disease on prevalence of spiral blood flow. J. Magn. Reson. Imaging 18:169–174, 2003.

    PubMed  Google Scholar 

  42. Huijbregts, H. J., P. J. Blankestijn, C. G. Caro, N. J. Cheshire, M. T. Hoedt, and R. P. Tutein. Nolthenius, and F. L. Moll. A helical PTFE arteriovenous access graft to swirl flow across the distal anastomosis: results of a preliminary clinical study. Eur. J. Vasc. Endovasc. Surg. 33:472–475, 2007.

    CAS  PubMed  Google Scholar 

  43. Jackson, S. P., W. S. Nesbitt, and E. Westein. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7(Suppl 1):17–20, 2009.

    CAS  PubMed  Google Scholar 

  44. Jahrome, O. K., I. Hoefer, G. J. Houston, P. A. Stonebridge, P. J. Blankestijn, F. L. Moll, and G. J. de Borst. Hemodynamic effects of spiral ePTFE prosthesis compared with standard arteriovenous graft in a carotid to jugular vein porcine model. J. Vasc. Access 12:224–230, 2011.

    PubMed  Google Scholar 

  45. Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2003.

    PubMed  Google Scholar 

  46. Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29:121–127, 2001.

    CAS  PubMed  Google Scholar 

  47. Karino, T., H. L. Goldsmith, M. Motomiya, S. Mabuchi, and Y. Sohara. Flow patterns in vessels of simple and complex geometries. Ann. N. Y. Acad. Sci. 516:422–441, 1987.

    CAS  PubMed  Google Scholar 

  48. Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and D. B. Longmore. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247, 1993.

    CAS  PubMed  Google Scholar 

  49. Knobloch, V., C. Binter, U. Gulan, A. Sigfridsson, M. Holzner, B. Luthi, and S. Kozerke. Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encoding-validation against 3D particle tracking velocimetry. Magn. Reson. Med. 71:1405–1415, 2014.

    PubMed  Google Scholar 

  50. Koskinas, K. C., Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59:1337–1349, 2012.

    PubMed  Google Scholar 

  51. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    CAS  PubMed  Google Scholar 

  52. Lee, K. E., J. S. Lee, and J. Y. Yoo. A numerical study on steady flow in helically sinuous vascular prostheses. Med. Eng. Phys. 33:38–46, 2011.

    PubMed  Google Scholar 

  53. Liu, X., Y. Fan, and X. Deng. Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann. Biomed. Eng. 38:917–926, 2010.

    PubMed  Google Scholar 

  54. Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011.

    PubMed  Google Scholar 

  55. Liu, X., Y. Fan, A. Sun, and X. Deng. Numerical simulation of nucleotide transport in the human thoracic aorta. J. Biomech. 46:819–827, 2013.

    PubMed  Google Scholar 

  56. Liu, X., Y. Fan, X. Y. Xu, and X. Deng. Nitric oxide transport in an axisymmetric stenosis. J. R. Soc. Interface 9:2468–2478, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Liu, X., F. Pu, Y. Fan, X. Deng, D. Li, and S. Li. A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am. J. Physiol. Heart Circ. Physiol. 297:H163–H170, 2009.

    CAS  PubMed  Google Scholar 

  58. Losi, P., S. Lombardi, E. Briganti, and G. Soldani. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts. Biomaterials 25:4447–4455, 2004.

    CAS  PubMed  Google Scholar 

  59. Loth, F., P. F. Fischer, and H. S. Bassiouny. Blood flow in end-to-side anastomoses. Annu. Rev. Fluid Mech. 40:367–393, 2008.

    Google Scholar 

  60. Lurie, F., and R. L. Kistner. On the existence of helical flow in veins of the lower extremities. J. Vasc. Surg.: Venous Lymphat. Disord. 1:134–138, 2013.

    Google Scholar 

  61. Mahadevia, R., A. J. Barker, S. Schnell, P. Entezari, P. Kansal, P. W. Fedak, S. C. Malaisrie, P. McCarthy, J. Collins, J. Carr, and M. Markl. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129:673–682, 2014.

    CAS  PubMed  Google Scholar 

  62. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    CAS  PubMed  Google Scholar 

  63. Markl, M., M. T. Draney, M. D. Hope, J. M. Levin, F. P. Chan, M. T. Alley, N. J. Pelc, and R. J. Herfkens. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J. Comput. Assist. Tomogr. 28:459–468, 2004.

    PubMed  Google Scholar 

  64. Markl, M., M. T. Draney, D. C. Miller, J. M. Levin, E. E. Williamson, N. J. Pelc, D. H. Liang, and R. J. Herfkens. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130:456–463, 2005.

    PubMed  Google Scholar 

  65. Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. 4D flow MRI. J. Magn. Reson. Imaging 36:1015–1036, 2012.

    PubMed  Google Scholar 

  66. Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011.

    PubMed Central  PubMed  Google Scholar 

  67. Meierhofer, C., E. P. Schneider, C. Lyko, A. Hutter, S. Martinoff, M. Markl, A. Hager, J. Hess, H. Stern, and S. Fratz. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur. Heart J. Cardiovasc. Imaging 14:797–804, 2013.

    PubMed  Google Scholar 

  68. Morbiducci, U., D. Gallo, D. Massai, F. Consolo, R. Ponzini, L. Antiga, C. Bignardi, M. A. Deriu, and A. Redaelli. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J. Biomech. Eng. 132:091005, 2010.

    PubMed  Google Scholar 

  69. Morbiducci, U., D. Gallo, R. Ponzini, D. Massai, L. Antiga, F. M. Montevecchi, and A. Redaelli. Quantitative analysis of bulk flow in image-based hemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann. Biomed. Eng. 38:3688–3705, 2010.

    PubMed  Google Scholar 

  70. Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.

    PubMed  Google Scholar 

  71. Morbiducci, U., R. Ponzini, M. Grigioni, and A. Redaelli. Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass: a numeric study. J. Biomech. 40:519–534, 2007.

    PubMed  Google Scholar 

  72. Morbiducci, U., R. Ponzini, G. Rizzo, M. E. Biancolini, F. Iannaccone, D. Gallo, and A. Redaelli. Synthetic dataset generation for the analysis and the evaluation of image-based hemodynamics of the human aorta. Med. Biol. Eng. Comput. 50:145–154, 2012.

    PubMed  Google Scholar 

  73. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevecchi, and A. Redaelli. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37:516–531, 2009.

    PubMed  Google Scholar 

  74. Morbiducci, U., R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. M. Montevecchi, and A. Redaelli. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech. Model. Mechanobiol. 10:339–355, 2011.

    PubMed  Google Scholar 

  75. Naphon, P., and S. Wongwises. A review of flow and heat transfer characteristics in curved tubes. Renew. Sustain. Energy Rev. 10:463–490, 2006.

    CAS  Google Scholar 

  76. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, J. Fu, J. Carberry, A. Fouras, and S. P. Jackson. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.

    CAS  PubMed  Google Scholar 

  77. Papaharilaou, Y., D. J. Doorly, and S. J. Sherwin. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J. Biomech. 35:1225–1239, 2002.

    CAS  PubMed  Google Scholar 

  78. Paul, M. C., and A. Larman. Investigation of spiral blood flow in a model of arterial stenosis. Med. Eng. Phys. 31:1195–1203, 2009.

    PubMed  Google Scholar 

  79. Sauvage, L. R., M. W. Walker, K. Berger, S. B. Robel, M. M. Lischko, S. G. Yates, and G. A. Logan. Current arterial prostheses. Experimental evaluation by implantation in the carotid and circumflex coronary arteries of the dog. Arch. Surg. 114:687–691, 1979.

    CAS  PubMed  Google Scholar 

  80. Scanlon, V. C., and T. Sanders. Essentials of Anatomy and Physiology, 5th edition. Philadelphia: F. A. Davis Company, 2007, pp. 297–297.

  81. Seed, W. A., and N. B. Wood. Velocity patterns in the aorta. Cardiovasc. Res. 5:319–330, 1971.

    CAS  PubMed  Google Scholar 

  82. Segadal, L., and K. Matre. Blood velocity distribution in the human ascending aorta. Circulation 76:90–100, 1987.

    CAS  PubMed  Google Scholar 

  83. Sherwin, S. J., O. Shah, D. J. Doorly, J. Peiro, Y. Papaharilaou, N. Watkins, C. G. Caro, and C. L. Dumoulin. The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis. J. Biomech. Eng.-T ASME 122:86–95, 2000.

    CAS  Google Scholar 

  84. Stankovic, Z., B. D. Allen, J. Garcia, K. B. Jarvis, and M. Markl. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 4:173–192, 2014.

    PubMed Central  PubMed  Google Scholar 

  85. Stary, H. C., A. B. Chandler, S. Glagov, J. R. Guyton, W. Insull, Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478, 1994.

    CAS  PubMed  Google Scholar 

  86. Stonebridge, P. A., and C. M. Brophy. Spiral laminar flow in arteries? Lancet 338:1360–1361, 1991.

    CAS  PubMed  Google Scholar 

  87. Stonebridge, P. A., P. R. Hoskins, P. L. Allan, and J. F. Belch. Spiral laminar flow in vivo. Clin. Sci. (Lond). 91:17–21, 1996.

    CAS  PubMed  Google Scholar 

  88. Stonebridge, P. A., F. Vermassen, J. Dick, J. J. Belch, and G. Houston. Spiral laminar flow prosthetic bypass graft: medium-term results from a first-in-man structured registry study. Ann. Vasc. Surg. 26:1093–1099, 2012.

    PubMed  Google Scholar 

  89. Sun, A., Y. Fan, and X. Deng. Numerical investigation of blood flow in the distal end of an axis-deviated arterial bypass model. Biorheology. 46:83–92, 2009.

    PubMed  Google Scholar 

  90. Sun, A. Q., Y. B. Fan, and X. Y. Deng. Numerical comparative study on the hemodynamic performance of a new helical graft with noncircular cross section and SwirlGraft. Artif. Organs. 34:22–27, 2010.

    PubMed  Google Scholar 

  91. Sun, A. Q., Y. B. Fan, and X. Y. Deng. Intentionally induced swirling flow may improve the hemodynamic performance of coronary bifurcation stenting. Catheter. Cardiovasc. Interv. 79:371–377, 2012.

    PubMed  Google Scholar 

  92. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.

    CAS  PubMed  Google Scholar 

  93. Uchida, Y., T. Tomaru, F. Nakamura, A. Furuse, Y. Fujimori, and K. Hasegawa. Percutaneous coronary angioscopy in patients with ischemic heart disease. Am. Heart J. 114:1216–1222, 1987.

    CAS  PubMed  Google Scholar 

  94. Van Canneyt, K., U. Morbiducci, S. Eloot, G. De Santis, P. Segers, and P. Verdonck. A computational exploration of helical arterio-venous graft designs. J. Biomech. 46:345–353, 2013.

    PubMed  Google Scholar 

  95. Van Langenhove, G., J. J. Wentzel, R. Krams, C. J. Slager, J. N. Hamburger, and P. W. Serruys. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 102:E22–E24, 2000.

    PubMed  Google Scholar 

  96. Wen, J., T. H. Zheng, W. T. Jiang, X. Y. Deng, and Y. B. Fan. A comparative study of helical-type and traditional-type artery nypass grafts: numerical simulation. ASAIO J. 57:399–406, 2011.

    PubMed  Google Scholar 

  97. Wetzel, S., S. Meckel, A. Frydrychowicz, L. Bonati, E. W. Radue, K. Scheffler, J. Hennig, and M. Markl. In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. AJNR Am. J. Neuroradiol. 28:433–438, 2007.

    CAS  PubMed  Google Scholar 

  98. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.

    CAS  PubMed  Google Scholar 

  99. Yamamoto, K., A. Aribowo, Y. Hayamizu, T. Hirose, and K. Kawahara. Visualization of the flow in a helical pipe. Fluid Dyn. Res. 30:251–267, 2002.

    Google Scholar 

  100. Yashiro, K., H. Shiratori, and H. Hamada. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288, 2007.

    CAS  PubMed  Google Scholar 

  101. Zabielski, L., and A. J. Mestel. Steady flow in a helically symmetric pipe. J. Fluid Mech. 370:297–320, 1998.

    CAS  Google Scholar 

  102. Zabielski, L., and A. J. Mestel. Unsteady blood flow in a helically symmetric pipe. J. Fluid Mech. 370:321–345, 1998.

    Google Scholar 

  103. Zabielski, L., and A. J. Mestel. Helical flow around arterial bends for varying body mass. J. Biomech. Eng. 122:135–142, 2000.

    CAS  PubMed  Google Scholar 

  104. Zhan, F., Y. Fan, and X. Deng. Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts. Thromb. Res. 125:413–418, 2010.

    CAS  PubMed  Google Scholar 

  105. Zhan, F., Y. B. Fan, and X. Y. Deng. Effect of swirling flow on platelet concentration distribution in small-caliber artificial grafts and end-to-end anastomoses. Acta Mech Sinica. 27:833–839, 2011.

    CAS  Google Scholar 

  106. Zhan, F., Y. B. Fan, X. Y. Deng, and Z. P. Xu. The beneficial effect of swirling flow on platelet adhesion to the surface of a sudden tubular expansion tube: its potential application in end-to-end arterial anastomosis. ASAIO J. 56:172–179, 2010.

    PubMed  Google Scholar 

  107. Zhang, Z., Y. Fan, X. Deng, G. Wang, H. Zhang, and R. Guidoin. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider. Sci. China C Life Sci. 51:913–921, 2008.

    PubMed  Google Scholar 

  108. Zheng, T., J. Wen, W. Jiang, X. Deng, and Y. Fan. Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft. Comput. Methods Biomech. Biomed. Eng. 17:549–559, 2014.

    Google Scholar 

  109. Zheng, T. H., Y. B. Fan, Y. Xiong, W. T. Jiang, and X. Y. Deng. Hemodynamic performance study on small diameter helical grafts. ASAIO J. 55:192–199, 2009.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Grants-in-Aid from the National Natural Science Research Foundation of China (No. 11332003, 31200703, 11102014, 11202016, 11421202), Specialized Research Fund for the Doctoral Program of Higher Education (20121102120038), Special Fund for Excellent Doctor Degree Dissertation of Beijing (20131000601) and the 111 Project (B13003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubo Fan or Xiaoyan Deng.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Sun, A., Fan, Y. et al. Physiological Significance of Helical Flow in the Arterial System and its Potential Clinical Applications. Ann Biomed Eng 43, 3–15 (2015). https://doi.org/10.1007/s10439-014-1097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1097-2

Keywords

Navigation