Skip to main content
Log in

Left Ventricular Fluid Mechanics: The Long Way from Theoretical Models to Clinical Applications

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abe, H., G. Caracciolo, A. Kheradvar, G. Pedrizzetti, B. K. Khandheria, J. Narula, and P. P. Sengupta. Left ventricular efficiency in heart failure is related to the intracavitary vortex strength during isovolumic contraction. Eur. Heart. J. Cardiovasc. Imag. 14:1049–1060, 2013.

    Article  Google Scholar 

  2. Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39:159–169, 2005.

    Article  Google Scholar 

  3. Baccani, B., F. Domenichini, and G. Pedrizzetti. Vortex dynamics in a model left ventricle during filling. Eur. J. Mech. B/Fluids 21:527–543, 2002.

    Article  Google Scholar 

  4. Baccani, B., F. Domenichini, and G. Pedrizzetti. Model and influence of mitral valve opening during the left ventricular filling. J. Biomech. 36:355–361, 2003.

    Article  PubMed  Google Scholar 

  5. Baccani, B., F. Domenichini, G. Pedrizzetti, and G. Tonti. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 35:665–671, 2002.

    Article  PubMed  Google Scholar 

  6. Beppu, S., S. Izumi, K. Miyatake, S. Nagata, Y. D. Park, H. Sakakibara, and Y. Nimura. Abnormal blood pathways in left ventricular cavity in acute myocardial infarction. Experimental observations with special reference to regional wall motion abnormality and hemostatis. Circulation 78:157–164, 1988.

    Article  CAS  PubMed  Google Scholar 

  7. Bogaert, J., and F. E. Rademakers. Regional nonuniformity of normal adult human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 280:H610–H620, 2001.

    CAS  PubMed  Google Scholar 

  8. Bolger, A. F., E. Heiberg, M. Karlsson, L. Wigstrom, J. Engvall, et al. Transit of blood flow through the human left ventricle mapped by Cardiovascular Magnetic Resonance. J. Cardiov. Magn. Reson. 9:741–747, 2007.

    Article  Google Scholar 

  9. Brutsaert, D. L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83:59–115, 2003.

    CAS  PubMed  Google Scholar 

  10. Carlhäll, C. J., and A. Bolger. Passing strange: flow in the failing ventricle. Circ. Heart Fail. 3:326–331, 2010.

    Article  PubMed  Google Scholar 

  11. Charonko, J. J., R. Kumar, K. Stewart, W. C. Little, and P. P. Vlachos. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41:1049–1061, 2013.

    Article  PubMed  Google Scholar 

  12. Cheng, Y., H. Oertel, and T. Schenkel. Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase. Ann. Biomed. Eng. 33(5):567–576, 2005.

    Article  PubMed  Google Scholar 

  13. Cimino, S., G. Pedrizzetti, G. Tonti, E. Canali, V. Petronilli, L. De Luca, C. Iacoboni, and L. Agati. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. B/Fluids 35:40–46, 2012.

    Article  Google Scholar 

  14. Courtois, M., S. J. Kovács, and P. A. Ludbrook. Transmitral pressure-flow velocity relation: importance of regional pressure gradients in the left ventricle during diastole. Circulation 78:661–671, 1988.

    Article  CAS  PubMed  Google Scholar 

  15. Courtois, M., S. J. Kovács, and P. A. Ludbrook. Physiologic early diastolic intraventricular gradient is lost during acute myocardial ischemia. Circulation 81:1688–1696, 1990.

    Article  CAS  PubMed  Google Scholar 

  16. Dabiri, J. O. Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41:17–33, 2009.

    Article  Google Scholar 

  17. Dabiri, J. O., and M. Gharib. The role of optimal vortex formation in biological fluid transport. Proc. R. Soc. Lond. Biol. 272:1557–1560, 2005.

    Article  Google Scholar 

  18. de Vecchi, A., D. A. Nordsletten, R. Razavi, G. Greil, and N. P. Smith. Patient specific fluid-structure ventricular modelling for integrated cardiac care. Med. Biol. Eng. Comput. 51:1261–1270, 2013.

    Article  PubMed  Google Scholar 

  19. Doenst, T., K. Spiegel, M. Reik, M. Markl, J. Hennig, S. Nitzsche, F. Beyersdorf, and H. Oertel. Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann. Thorac. Surg. 87:1187–1195, 2009.

    Article  PubMed  Google Scholar 

  20. Domenichini, F., and G. Pedrizzetti. Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape. Comput. Methods Biomech. Biomed. Eng. 14(1):95–101, 2011.

    Article  Google Scholar 

  21. Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.

    Article  Google Scholar 

  22. Domenichini, F., G. Querzoli, A. Cenedese, and G. Pedrizzetti. Combined experimental and numerical analysis of the flow structure into the left ventricle. J. Biomech. 40:1988–1994, 2007.

    Article  CAS  PubMed  Google Scholar 

  23. Dyverfeldt, P., R. Gårdhagen, A. Sigfridsson, M. Karlsson, and T. Ebbers. On MRI turbulence quantification. Magn. Reson. Imaging 27:913–922, 2009.

    Article  PubMed  Google Scholar 

  24. Dyverfeldt, P., A. Sigfridsson, H. Knutsson, and T. Ebbers. A novel MRI framework for the quantification of any moment of arbitrary velocity distributions. Magn. Reson. Med. 65:725–731, 2011.

    Article  PubMed  Google Scholar 

  25. Ebbers, T., L. Wigstrom, A. F. Bolger, J. Engvall, and M. Karlsson. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn. Reson. Med. 45:872–879, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Eriksson, J., A. F. Bolger, T. Ebbers, and C. J. Carlhäll. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imag. 14:417–424, 2013.

    Article  Google Scholar 

  27. Eriksson, J., C. J. Carlhäll, P. Dyverfeldt, J. Engvall, A. F. Bolger, and T. J. Ebbers. Semi-automatic quantification of 4D left ventricular blood flow. Cardiovasc. Magn. Reson. 12(1):9, 2010.

    Article  Google Scholar 

  28. Eriksson, J., P. Dyverfeldt, J. Engvall, A. F. Bolger, T. Ebbers, and C. J. Carlhäll. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 300:H2135–H2141, 2011.

    Article  CAS  PubMed  Google Scholar 

  29. Falahatpisheh, A. Image-based studies for modeling cardiovascular fluid dynamics with applications in congenital heart defects. Ph.D. Thesis, University of California Irvine, 2013.

  30. Faludi, R., M. Szulik, J. D’Hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, and J.-U. Voigt. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139:1501–1510, 2010.

    Article  PubMed  Google Scholar 

  31. Firstenberg, M. S., N. L. Greenberg, M. J. Garcia, and J. D. Thomas. Relationship between ventricular contractility and early diastolic intraventricular pressure gradients: a diastolic link to systolic function. J. Am. Soc. Echocardiogr. 21:501–506, 2008.

    Article  PubMed  Google Scholar 

  32. Garcia, D., J. C. del Álamo, D. Tanné, R. Yotti, C. Cortina, É. Bertrand, J. C. Antoranz, E. Pérez-David, R. Rieu, F. Fernández-Avilés, and J. Bermejo. Two-dimensional intraventricular flow mapping by digital processing conventional Color-Doppler echocardiography images. IEEE Trans. Med. Imag. 29:1701–1713, 2010.

    Article  Google Scholar 

  33. Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. U.S.A. 103:6305–6308, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140, 1998.

    Article  CAS  Google Scholar 

  35. Ghosh, E., and S. J. Kovács. The vortex formation time to diastolic function relation: assessment of pseudonormalized vs. normal filling. Physiol. Rep. 1(6):e00170, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Goliasch, G., K. Goscinska-Bis, G. Caracciolo, A. Nakabo, G. Smolka, G. Pedrizzetti, J. Narula, and P. P. Sengupta. CRT improves left ventricular filling dynamics: insights from echocardiographic Particle Imaging Velocimetry. J. Am. Coll. Cardiol. Img. 6:704–713, 2013.

    Article  Google Scholar 

  37. Gresho, P. M., and R. L. Sani. On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 7:1111–1145, 1987.

    Article  Google Scholar 

  38. Griffith, B., X. Luo, D. McQueen, and C. S. Peskin. Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int. J. Appl. Mech. 1(1):137–177, 2009.

    Article  Google Scholar 

  39. Haacke, E. M., R. F. Brown, M. Thompson, and R. Venkatesan. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley, p. 914, 1999.

    Google Scholar 

  40. Hendabadi, S., J. Bermejo, Y. Benito, R. Yotti, F. Fernandez-Aviles, J. C. Del Alamo, and S. C. Shadden. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann. Biomed. Eng. 41:2603–2616, 2013.

    Article  PubMed  Google Scholar 

  41. Hong, G. R., M. Kim, G. Pedrizzetti, and M. A. Vannan. Current clinical application of intracardiac flow analysis using echocardiography. J. Cardiovasc. Ultrasound 21:155–162, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hong, G. R., G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J. K. Kim, A. Bawela, S. Liu, N. Chung, H. Houle, J. Narula, and M. A. Vannan. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector Particle Image Velocimetry. J. Am. Coll. Cardiol. Img. 1:705–717, 2008.

    Article  Google Scholar 

  43. Jeong, J., and F. Hussain. On the identification of a vortex. J. Fluid Mech. 285:69–94, 1995.

    Article  Google Scholar 

  44. Jiamsripong, P., A. M. Calleja, M. S. Alharthi, M. Dzsinich, E. M. McMahon, J. J. Heys, M. Milano, P. P. Sengupta, B. K. Khandheria, and M. Belohlavek. Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by Vortex Formation Time. J. Am. Soc. Echocardiogr. 22:427–431, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37(1):1–13, 2009.

    Article  PubMed  Google Scholar 

  46. Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. Lindner, M. Gharib, and D. Sahn. Echographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.

    Article  PubMed  Google Scholar 

  47. Kheradvar, A., R. Assadi, A. Falahatpisheh, and P. P. Sengupta. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J. Am. Soc. Echocardiogr. 25:220–227, 2012.

    Article  PubMed  Google Scholar 

  48. Kheradvar, A., and M. Gharib. Influence of ventricular pressure-drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 35(12):2050–2064, 2007.

    Article  PubMed  Google Scholar 

  49. Kheradvar, A., M. Milano, and M. Gharib. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 53(1):8–16, 2007.

    Article  PubMed  Google Scholar 

  50. Kilner, P. J. Postulated functional advantages of a looped as opposed to a linearly arranged heart. Am. J. Physiol. Heart Circ. Physiol. 298:H726, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  CAS  PubMed  Google Scholar 

  52. Kim, H., J. Hertzberg, and R. Shandas. Development and validation of echo PIV. Exp. Fluids 36:455–462, 2004.

    Article  Google Scholar 

  53. Kim, D. H., J. S. Seo, Y. S. Choi, H. R. Kim, Y. J. Chung, S. C. Yun, J. M. Song, D. H. Kang, and J. K. Song. Determinants of left ventricular vortex flow parameters assessed by contrast echocardiography in an in vivo animal model. Echocardiography 30(5):588–598, 2013.

    Article  PubMed  Google Scholar 

  54. Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional Magnetic Resonance velocity mapping. J. Am. Coll. Cardiol. 26:224–238, 1995.

    Article  CAS  PubMed  Google Scholar 

  55. Kovács, S. J., D. M. McQueen, and C. S. Peskin. Modelling cardiac fluid dynamics and diastolic function. Philos. Trans. R. Soc. Lond. A. 359:1299–1314, 2001.

    Article  Google Scholar 

  56. Lampropoulos, K., W. Budts, A. Van de Bruaene, E. Troost, and J. P. van Melle. Visualization of the intracavitary blood flow in systemic ventricles of Fontan patients by contrast echocardiography using particle image velocimetry. Cardiovasc. Ultrasound 10:18, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Le, T. B., and F. Sotiropoulos. On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle. Eur. J. Mech. B 35:20–24, 2012.

    Article  Google Scholar 

  58. Le, T. B., F. Sotiropoulos, D. Coffey, and D. Keefe. Vortex formation and instability in the left ventricle. Phys. Fluids 24:091110, 2012.

    Article  Google Scholar 

  59. Lemmon, J. D., and A. P. Yoganathan. Three-dimensional computational model of left heart diastolic function with fluid–structure interaction. J. Biomech. Eng. 122:109–117, 2000.

    Article  CAS  PubMed  Google Scholar 

  60. Lemmon, J. D., and A. P. Yoganathan. Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J. Biomech. Eng. 122:297–303, 2000.

    Article  CAS  PubMed  Google Scholar 

  61. Long, Q., R. Merrifield, X. Y. Xu, P. J. Kilner, D. N. Firmin, and G. Z. Yang. Subject-specific computational simulation of left ventricular flow based on magnetic resonance imaging. Proc. Inst. Mech. Eng. Part H 222:475–485, 2008.

    Article  CAS  Google Scholar 

  62. Mangual, J. O., A. De Luca, E. Kraigher-Krainer, L. Toncelli, A. Shah, S. Solomon, G. Galanti, F. Domenichini, and G. Pedrizzetti. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 46:1611–1617, 2013.

    Article  PubMed  Google Scholar 

  63. Mangual, J. O., F. Domenichini, and G. Pedrizzetti. Describing the highly 3D flow in the right ventricle. Ann. Biomed. Eng. 40:1790–1801, 2012.

    Article  CAS  PubMed  Google Scholar 

  64. Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovas. Magn. Res. 13:7, 2011.

    Article  Google Scholar 

  65. McQueen, D., and C. S. Peskin. A 3D computational method for blood flow in the heart. I: immersed elastic fibers in a viscous incompressible fluid. J. Comp. Phys. 81:372–405, 1989.

    Article  Google Scholar 

  66. McQueen, D., and C. S. Peskin. A 3D computational method for blood flow in the heart. II: contractile fibers. J. Comp. Phys. 82:289–297, 1989.

    Article  Google Scholar 

  67. McQueen, D., and C. S. Peskin. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34:56–60, 2000.

    Article  Google Scholar 

  68. Nordsletten, D., M. McCormick, P. J. Kilner, P. Hunter, D. Kay, and N. P. Smith. Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int. J. Numer. Methods Biomed. Eng. 27:1017–1039, 2010.

    Article  Google Scholar 

  69. Nucifora, G., V. Delgado, M. Bertini, N. A. Marsan, N. R. Van de Veire, A. C. T. Ng, H. M. J. Siebelink, M. J. Schalij, E. R. Holman, P. P. Sengupta, and J. J. Bax. Left ventricular muscle and fluid mechanics in acute myocardial infarction. Am. J. Cardiol. 106:1404–1409, 2010.

    Article  PubMed  Google Scholar 

  70. Oertel, H., K. Spiegel, and S. Donisi. Modelling the human cardiac fluid mechanics. Karlsruhe: University Press Karlsruhe, p. 39, 2006.

    Google Scholar 

  71. Ohtsuki, S., and M. Tanaka. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J. Vis. 9:69–82, 2006.

    Article  Google Scholar 

  72. Pasipoularides, A. Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic J. Cardiol. 53:458–469, 2012.

    PubMed  Google Scholar 

  73. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.

    Article  PubMed  Google Scholar 

  74. Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010.

    Article  PubMed  Google Scholar 

  75. Pedrizzetti, G., G. La Canna, O. Alfieri, and G. Tonti. The vortex—an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 2014. doi:10.1038/nrcardio.2014.75.

    PubMed  Google Scholar 

  76. Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comp. Phys. 10:252–271, 1972.

    Article  Google Scholar 

  77. Poelma, C., J. M. Mari, N. Foin, M. X. Tang, R. Krams, C. G. Caro, P. D. Weinberg, and J. Westerweel. 3D flow reconstruction using ultrasound PIV. Exp. Fluids 50:777–785, 2011.

    Article  CAS  Google Scholar 

  78. Poh, K. K., L. C. Lee, L. Shen, E. Chong, Y. L. Tan, P. Chai, T. C. Yeo, and M. J. Wood. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time. Eur. Heart J. Cardiovasc. Imag. 13:385–393, 2012.

    Article  Google Scholar 

  79. Prinz, C., R. Lehmann, D. B. da Silva, B. Jurczak, T. Bitter, L. Faber, and D. Horstkotte. Echocardiographic particle image velocimetry for the evaluation of diastolic function in hypertrophic nonobstructive cardiomyopathy. Echocardiography 2013. doi:10.1111/echo.12487.

    Google Scholar 

  80. Rodriguez Munoz, D., M. Markl, J. L. Moya, et al. Intracardiac flow visualization: current status and future directions. Eur. Heart J. Cardiovasc. Imag. 14(11):1029–1038, 2013.

    Article  Google Scholar 

  81. Saber, N., A. Gosman, N. Wood, P. J. Kilner, C. Charrier, and D. Firmin. Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann. Biomed. Eng. 29:275–283, 2001.

    Article  CAS  PubMed  Google Scholar 

  82. Saber, N., N. Wood, A. Gosman, R. Merrifield, G. Yang, C. Charrier, P. Gatehouse, and D. Firmin. Progress towards patient-specific computational flow modeling of the left heart via combination of MRI with computational fluid dynamics. Ann. Biomed. Eng. 31:42–52, 2003.

    Article  PubMed  Google Scholar 

  83. Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-Based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37:503–515, 2009.

    Article  PubMed  Google Scholar 

  84. Sengupta, P. P., B. K. Khandheria, J. Korinek, A. Jahangir, S. Yoshifuku, I. Milosevic, and M. Belohlavek. Left ventricular isovolumic flow sequence during sinus and paced rhythms. J. Am. Coll. Cardiol. 49:899–908, 2007.

    Article  PubMed  Google Scholar 

  85. Sengupta, P. P., G. Pedrizzetti, P. J. Kilner, A. Kheradvar, T. Ebbers, A. Frazer, G. Tonti, and J. Narula. Emerging trends in clinical assessment of cardiovascular fluid dynamics. J. Am. Coll. Cardiol. Img. 5:305–316, 2012.

    Article  Google Scholar 

  86. Sengupta, P. P., G. Pedrizzetti, and J. Narula. Multiplanar visualization of blood flow using echocardiographic Particle Imaging Velocimetry. J. Am. Coll. Cardiol. Imag. 5:566–569, 2012.

    Article  Google Scholar 

  87. Seo, J. H., and R. Mittal. Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids 25:110801, 2013.

    Article  Google Scholar 

  88. Seo, J. H., V. Vedula, T. Abraham, and R. Mittal. Multiphysics computational models for cardiac flow and virtual cardiography. Int. J. Numer. Method Biomed. Eng. 29(8):850–869, 2013.

    Article  PubMed  Google Scholar 

  89. Son, J. W., W. J. Park, J. H. Choi, H. Houle, M. A. Vannan, G. R. Hong, and N. Chung. Abnormal left ventricular vortex flow patterns in association with left ventricular apical thrombus formation in patients with anterior myocardial infarction. Circ. J. 76:2640–2646, 2012.

    Article  PubMed  Google Scholar 

  90. Steine, K., M. Stugaar, and O. A. Smiseth. Mechanisms of diastolic intraventricular regional pressure differences and flow in the inflow and outflow tracts. J. Am. Coll. Cardiol. 40:983–990, 2002.

    Article  PubMed  Google Scholar 

  91. Stevanella, M., E. Votta, and A. Redaelli. Mitral valve Finite Element modeling: implications of tissues’ nonlinear response and annular motion. J. Biomech. Eng. 131:121010, 2009.

    Article  PubMed  Google Scholar 

  92. Tang, D., C. Yang, T. Geva, and P. J. del Nido. Image-based patient-specific ventricle models with fluid–structure interaction for cardiac function assessment and surgical design optimization. Prog. Pediatr. Card. 30:51–62, 2010.

    Article  Google Scholar 

  93. Toger, J., M. Kanski, M. Carlsson, A. Kovacs, G. Soderlind, H. Arheden, and E. Heiberg. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 40:2652–2662, 2012.

    Article  PubMed  Google Scholar 

  94. Uejima, T., A. Koik, H. Sawada, T. Aizawa, S. Ohtsuki, M. Tanaka, T. Furukawa, and A. G. Fraser. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med. Biol. 36:772–788, 2010.

    Article  PubMed  Google Scholar 

  95. Vierendeels, J. A., K. Riemslagh, E. Dick, and P. R. Verdonck. Computer simulation of intraventricular flow and pressure during diastole. J. Biomech. Eng. 122:667–674, 2000.

    Article  CAS  PubMed  Google Scholar 

  96. Vigmod, E., C. Clements, D. McQueen, and C. S. Peskin. Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog. Biophys. Mol. Biol. 97:520–542, 2008.

    Article  Google Scholar 

  97. Watanabe, H., S. Sugiura, and T. Hisada. The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am. J. Physiol. Heart Circ. Physiol. 294:2191–2196, 2008.

    Article  Google Scholar 

  98. Watanabe, H., S. Sugiura, and T. Hisada. Reply to “Letter to the editor: postulated functional advantages of a looped as opposed to a linearly arranged heart”. Am. J. Physiol. Heart Circ. Physiol. 298:H727, 2010.

    Article  CAS  Google Scholar 

  99. Westerdale, J., M. Belohlavek, E. M. McMahon, P. Jiamsripong, J. J. Heys, and M. Milano. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. J. Ultrasound Med. 30(2):187–195, 2011.

    PubMed  Google Scholar 

  100. Zhang, F., C. Lanning, L. Mazzaro, A. J. Barker, P. E. Gates, W. D. Strain, et al. In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging. Ultrasound Med. Biol. 37(3):450–464, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Zheng, X., J. H. Seo, V. Vedula, T. Abraham, and R. Mittal. Computational modeling and analysis of intracardiac flows in simple models of the left ventricle. Eur. J. Mech. B 35:31–39, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank J. O. Mangual, J. H. Seo, R. Mittal, J. Eriksson, and T. Ebbers for helping us in the preparation of the manuscript. They kindly prepared original figures based on their previously published results. We are deeply indebted to G. Tonti for his invaluable competence and enthusiastic support about clinical cardiology. We are also indebted to all the colleagues that shared their knowledge, capability, and enthusiasm in exploring the charming, winding world of the cardiac fluid dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Pedrizzetti.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrizzetti, G., Domenichini, F. Left Ventricular Fluid Mechanics: The Long Way from Theoretical Models to Clinical Applications. Ann Biomed Eng 43, 26–40 (2015). https://doi.org/10.1007/s10439-014-1101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1101-x

Keywords

Navigation