Skip to main content
Log in

On Mitral Valve Dynamics and its Connection to Early Diastolic Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the field of cardiology, the current ability to accurately detect diastolic dysfunction is unsatisfactory due to the lack of an effective diagnostic index. Isolated indexes obtained from echocardiography are all restricted to a certain aspect of ventricular diastolic function only, and individually cannot be regarded as a global representative for the left heart diastolic function. Due to complexity of cardiac motion, a reliable measure for diastolic performance should be a parameter that independently correlates with several aspects of cardiac function. The presence of trans-mitral vortex ring and its influence on dynamics of the mitral valve is a topic that has been recently received more attention in cardiovascular research. One obvious reason for this attention is to find better solutions to overcome our inability in interpretation of Doppler mitral inflow patterns for distinguishing a normal trans-mitral flow from a pseudonormal pattern. In the present study, we investigated the relationship among the ventricular early pressure drop, trans-mitral thrust as a force generated during diastolic filling and mitral annulus recoil through the index of vortex formation time. As a result, we found that vortex formation time is independently correlated to trans-mitral thrust, minimal ventricular pressure and pressure drop time-constant of isovolumic relaxation phase. Results also showed that trans-mitral thrust is maximized when the non-dimensional vortex formation time is in the range of 4 and 5.5 regardless of the shape of the waveform or the value of the pressure drop time-constant. In conclusion, this study confirms that vortex formation time, a non-dimensional measure for duration of E-wave, can be used as an index to assess diastolic ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Alam M., Höglund C. Assessment by echocardiogram of left ventricular diastolic function in healthy subjects using the atrioventricular plane displacement. Am. J. Cardiol. 1992; 69:505–565

    Google Scholar 

  2. Baccani B., Domenichini F., Pedrizzetti G., Tonti G. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 2002; 35(5):665–671. doi:10.1016/S0021-9290(02)00005-2

    Article  PubMed  Google Scholar 

  3. Bruch C., Schmermund A., Bartel T., Schaar J., Erbel R.. Tissue Doppler imaging: a new technique for assessment of pseudonormalization of the mitral inflow pattern. Echocardiography 2000; 17(6 Pt 1):539–546. doi:10.1046/j.1540-8175.2000.00539.x

    Article  PubMed  CAS  Google Scholar 

  4. Dabiri J. O., Gharib M.. Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 2005; 538: 111–136. doi:10.1017/S002211200500515X

    Article  Google Scholar 

  5. Dincer I., Kumbasar D., Nergisoglu G., Atmaca Y., Kutlay S., Akyurek O., Sayin T., Erol C., Oral D. Assessment of left ventricular diastolic function with Doppler tissue imaging: effects of preload and place of measurements. Int. J. Cardiovasc. Imaging 2002; 18(3):155–160

    Article  PubMed  Google Scholar 

  6. Dong S. J., Hees P. S., Siu C. O., Weiss J. L., Shapiro E. P. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am. J. Physiol. Heart Circ. Physiol. 2001; 281(5):H2002–H2009

    PubMed  CAS  Google Scholar 

  7. Firstenberg M. S., Greenberg N. L., Main M. L., Drinko J. K., Odabashian J. A., Thomas J. D., Garcia M. J. Determinants of diastolic myocardial tissue Doppler velocities: influences of relaxation and preload. J. Appl. Physiol. 2001; 90(1): 299–307

    PubMed  CAS  Google Scholar 

  8. Fukuda K., Oki T., Tabata T., Luchi A., Ito S.. Regional left ventricular wall motion abnormalities in myocardial infarction and mitral annular descent velocities studied with pulsed tissue Doppler imaging. J. Am. Soc. Echocardiogr. 1998; 11(9):841–848. doi:10.1016/S0894-7317(98)70003-3

    Article  PubMed  CAS  Google Scholar 

  9. Galiuto L., Ignone G., DeMaria A. N. Contraction and relaxation velocities of the normal left ventricle using pulsed-wave tissue Doppler echocardiography. Am. J. Cardiol. 1998; 81:609–614. doi:10.1016/S0002-9149(97)00990-9

    Article  PubMed  CAS  Google Scholar 

  10. Garcia M. J., Thomas J. D. Tissue Doppler to assess diastolic left ventricular function. Echocardiography 1999; 16(5):501–508. doi:10.1111/j.1540-8175.1999.tb00097.x

    Article  PubMed  Google Scholar 

  11. Garcia M. J., Thomas J. D., Klein A. L. New Doppler echocardiographic applications for the study of diastolic function. J. Am. Coll. Cardiol. 1998; 32:865–875. doi:10.1016/S0735-1097(98)00345-3

    Article  PubMed  CAS  Google Scholar 

  12. Gharib M., Rambod E., Kheradvar A., Sahn D., Dabiri J. O.. A global index for heart failure based on optimal vortex formation in the left ventricle. Proc. Natl. Acad. Sci. USA 2006; 103(16): 6305–6308. doi:10.1073/pnas.0600520103

    Article  PubMed  CAS  Google Scholar 

  13. Gharib M., Rambod E., Shariff K. A universal time scale for vortex ring formation. J. Fluid Mech. 1998; 360: 121–140 doi:10.1017/S0022112097008410

    Article  CAS  Google Scholar 

  14. Hasegawa H., Little W. C., Ohno M., Brucks S., Morimoto A., Cheng H. J., Cheng C. P. Diastolic mitral annular velocity during the development of heart failure. J. Am. Coll. Cardiol. 2003; 41:1590–1597 doi:10.1016/S0735-1097(03)00260-2

    Article  PubMed  Google Scholar 

  15. Hung M. J., Cherng W. J., Kuo L. T., Wang C. H., Chern M. S.. Analysis of left atrial volume change rate during left ventricular diastolic phase with M-mode echocardiography for differentiation between normal and pseudonormal mitral inflow. Am. J. Cardiol. 2002; 89(5):552–556 doi:10.1016/S0002-9149(01)02295-0

    Article  PubMed  Google Scholar 

  16. Keren G., Sonnenblick E. H., LeJemtel T. H.. Mitral annulus motion: relation to pulmonary venous and transmitral flows in normal subjects and in patients with dilated cardiomyopathy. Circulation 1988; 78:621

    PubMed  CAS  Google Scholar 

  17. Kheradvar, A., R. Assadi, K. R. Jutzy, and R. Bansal. Transmitral vortex formation: a reliable indicator for pseudonormal diastolic dysfunction. J. Am. Coll. Cardiol. 51(10) supplement A: A104, 2008

  18. Kheradvar A., Gharib M.. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 2007; 35(12):2050–2064. doi:10.1007/s10439-007-9382-y

    Article  PubMed  Google Scholar 

  19. Kheradvar A., Kasalko J., Johnson D., Gharib M.. An in vitro study of changing profile heights in mitral bioprostheses and their influence on flow. ASAIO J. 2006; 52(1):34–38. doi:10.1097/01.mat.0000191203.09932.8c

    Article  PubMed  Google Scholar 

  20. Kheradvar A., Milano M., Gharib M. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 2007; 53(1):8–16. doi:10.1097/01.mat.0000249870.44625.22

    Article  PubMed  Google Scholar 

  21. Kheradvar A., Milano M., Gorman R. C., Gorman J. H. III, Gharib M.. Assessment of left ventricular elastic and viscous components based on ventricular harmonic behavior. Cardiovasc. Eng. 2006; 6(1):30–39. doi:10.1007/s10558-006-9001-9

    Article  PubMed  Google Scholar 

  22. Khouri S. J., Maly G. T., Suh D. D., Walsh T. E.. A practical approach to the echocardiographic evaluation of diastolic function. J. Am. Soc. Echocardiogr. 2004 17(3):290–297. doi:10.1016/j.echo.2003.08.012

    Article  PubMed  Google Scholar 

  23. Kilner P. J., Yang G. Z., Wilkes A. J., Mohiaddin R. H., Firmin D. N., Yacoub M. H. 2000. Asymmetric redirection of flow through the heart. Nature 404:759–761. doi:10.1038/35008075

    Article  PubMed  CAS  Google Scholar 

  24. Kranidis A., Kostopoulos K., Anthopoulos L.. Evaluation of left ventricular filling by echocardiographic atrioventricular plane displacement in patients with coronary artery disease. Int. J. Cardiol. 1995; 48:183–186. doi:10.1016/0167-5273(94)02222-5

    Article  PubMed  CAS  Google Scholar 

  25. Nagueh S. F., Middleton K. J., Kopelen H. A., Zoghbi W. A., Quinones M. A. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. Am. Coll. Cardiol. 1997; 30:1527–1533. doi:10.1016/S0735-1097(97)00344-6

    Article  PubMed  CAS  Google Scholar 

  26. Nishimura R. A., Tajik A. J. Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta stone. J. Am. Coll. Cardiol. 1997; 30:8–18. doi:10.1016/S0735-1097(97)00144-7

    Article  PubMed  CAS  Google Scholar 

  27. Ommen S. R., Nishimura R. A., Appleton C. P., Miller F. A., Oh J. K., Redfield M. M., Tajik A. J.. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 2000; 102(15):1788–1794

    PubMed  CAS  Google Scholar 

  28. Ormiston J. A., Shah P., Tei C., Wong M. Size and motion of the mitral valve annulus in man. Circulation 1981; 64:113–130

    PubMed  CAS  Google Scholar 

  29. Poerner T. C., Goebel B., Unglaub P., Sueselbeck T., Strotmann J. M., Pfleger S., Borggrefe M., Haase K. K. Detection of a pseudonormal mitral inflow pattern: an echocardiographic and tissue Doppler study. Echocardiography 2003; 20(4):345–356. doi:10.1046/j.1540-8175.2003.03040.x

    Article  PubMed  Google Scholar 

  30. Poirier P., Bogaty P., Garneau C., Marois L., Dumesnil J. G.. Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 2001; 24(1):5–10. doi:10.2337/diacare.24.1.5

    Article  PubMed  CAS  Google Scholar 

  31. Rivas-Gotz C., Khoury D. S., Manolios M., Rao L., Kopelen H. A., Nagueh S. F.. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: a novel index of left ventricular relaxation: experimental studies and clinical application. J. Am. Coll. Cardiol. 2003; 42(8):1463–1470. doi:10.1016/S0735-1097(03)01034-9

    Article  PubMed  Google Scholar 

  32. Rowlatt U.. Functional morphology of the heart in mammals. Am. Zool. 1968; 8(2):221–229

    PubMed  CAS  Google Scholar 

  33. Sabbah H. N., Stein P. D. Pressure–diameter relations during early diastole in dogs: incompatibility with the concept of passive left ventricular filling. Circ. Res. 1981; 48:357–365

    PubMed  CAS  Google Scholar 

  34. Salemi V. M., Picard M. H., Mady C.. Assessment of diastolic function in endomyocardial fibrosis: value of flow propagation velocity. Artif. Organs 2004; 28(4):343–346. doi:10.1111/j.1525-1594.2004.47352.x

    Article  PubMed  Google Scholar 

  35. Sohn D. W., Chai I. H., Lee D. J., Kim H. C., et al. Assessment of mitral annulus velocity by Doppler Tissue imaging in the evaluation of left ventricular diastolic function. J. Am. Coll. Cardiol. 1997; 30:474–480. doi:10.1016/S0735-1097(97)88335-0

    Article  PubMed  CAS  Google Scholar 

  36. Steine K., Stugaard M., Smiseth O. A. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation 1999; 99(15):2048–2054

    PubMed  CAS  Google Scholar 

  37. Thomas J. D., Weyman A. E. Echocardiographic Doppler evaluation of left ventricular diastolic function: physics and physiology. Circulation 1991; 84(3):977–990

    PubMed  CAS  Google Scholar 

  38. Villari B., Hess O. M., Campbell S. E., Vassalli G., Chiariello M., Krayenbuehl H. P. Sex-dependent differences in left ventricular function and structure in chronic pressure overload. Eur. Heart J. 1995; 16:1410–1419

    PubMed  CAS  Google Scholar 

  39. Whalley G. A., Walsh H. J., Gamble G. D., Doughty R. N.. Comparison of different methods for detection of diastolic filling abnormalities. J. Am. Soc. Echocardiogr. 2005; 18(7):710–717. doi:10.1016/j.echo.2005.03.038

    Article  PubMed  Google Scholar 

  40. Yellin E. L., Hori M., Yoran C., Sonnenblick E. H., et al. Left ventricular relaxation in the filling and nonfilling intact canine heart. Am. J. Physiol. (Heart Circ. Physiol.) 1986; 250:H620–H629

    CAS  Google Scholar 

  41. Zile M. R., Brutsaert D. L.. New concepts in diastolic dysfunction and diastolic heart failure: part i diagnosis, prognosis, and measurements of diastolic function. Circulation 2002; 105:1387–1393 doi:10.1161/hc1102.105289

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge Edwards Lifesciences Corporation for providing the bioprosthetic heart valves for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Kheradvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheradvar, A., Gharib, M. On Mitral Valve Dynamics and its Connection to Early Diastolic Flow. Ann Biomed Eng 37, 1–13 (2009). https://doi.org/10.1007/s10439-008-9588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9588-7

Keywords

Navigation