Skip to main content
Log in

MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A three-dimensional computational fluid dynamics (CFD) method has been developed to simulate the flow in a pumping left ventricle. The proposed method uses magnetic resonance imaging (MRI) technology to provide a patient specific, time dependent geometry of the ventricle to be simulated. Standard clinical imaging procedures were used in this study. A two-dimensional time-dependent orifice representation of the heart valves was used. The location and size of the valves is estimated based on additional long axis images through the valves. A semi-automatic grid generator was created to generate the calculation grid. Since the time resolution of the MR scans does not fit the requirements of the CFD calculations a third order bezier approximation scheme was developed to realize a smooth wall boundary and grid movement. The calculation was performed by a Navier–Stokes solver using the arbitrary Lagrange–Euler (ALE) formulation. Results show that during diastole, blood flow through the mitral valve forms an asymmetric jet, leading to an asymmetric development of the initial vortex ring. These flow features are in reasonable agreement with in vivo measurements but also show an extremely high sensitivity to the boundary conditions imposed at the inflow. Changes in the atrial representation severely alter the resulting flow field. These shortcomings will have to be addressed in further studies, possibly by inclusion of the real atrial geometry, and imply additional requirements for the clinical imaging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Atkinson, D. J. and R. R. Edelman. Cineangiography of the heart in a single breath hold with a segmented turboflash sequence. Radiology 178:357–360, 1991.

    PubMed  CAS  Google Scholar 

  2. Axel, L. Blood flow effects in magnetic resonance imaging. Am J Roentgenol 143(6):1157–1166, 1984.

    CAS  Google Scholar 

  3. Baccani, B., F. Domenichini, and Pedrizzetti. Vortex dynamics in a model left ventricle during filling. Eur. J. Mech. B/Fluids 21:527–543, 2002.

    Article  Google Scholar 

  4. Baccani, B., F. Domenichini, and Pedrizzetti. Model and influence of mitral valve opening during the left ventricular filling. J. Biomech. 36:355–361, 2003.

    Article  PubMed  Google Scholar 

  5. Baccani, B., F. Domenichini, G. Pedrizzetti, and G. Tonti. Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. J. Biomech. 35(5):665–671, 2002.

    Article  PubMed  Google Scholar 

  6. Bolzon, G., L. Zovatto, and G. Pedrizzetti. Birth of three-dimensionality in a pulsed jet through a circular orifice. J. Fluid. Mech. 493:209–218, 2003.

    Article  Google Scholar 

  7. Chahboune, B. and J. M. Crolet. Numerical simulation of the blood-wall interaction in the human left ventricle. Eur. Phys. J.-Appl. Phys. 2:291–297, 1998.

    Article  Google Scholar 

  8. Cheng, Y., H. Oertel, and T. Schenkel. Fluid–structure coupled cfd simulation of the left ventricular flow during filling phase. Ann. Biomed. Eng. 33(5):567–576, 2004.

    Article  Google Scholar 

  9. Domenichini, F., G. Pedrizzetti, and B. Baccani. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539:179–198, 2005.

    Article  Google Scholar 

  10. Ebbers, T, L. Wigstrï, A. F. Bolger, B. Wranne, M. Karlsson. Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J. Biomech. Eng. 124:288–293, 2002.

    Article  PubMed  CAS  Google Scholar 

  11. Ferziger, J. and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 1997.

    Google Scholar 

  12. Geiger, D., A. Gupta, L. A. Costa, and J. Vlontzos. Dynamic programming for detection, tracking and matching deformable contours. IEEE Trans. PAMI 17(3):294–302, 1995.

    Google Scholar 

  13. Hennig, J. K-space sampling strategies. Eur Radiol 9:1020–1031, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Hunter P. J., A. J. Pullan, B. H. Smaill. Modeling total heart function. Annu. Rev. Biomed. Eng. 5:147–177, 2003.

    Article  PubMed  CAS  Google Scholar 

  15. Jolly, M.-P. Combining edge, region and shape information to segment the left ventricle in cardiac mr images. In: MICCAI, 2001, pp. 482–490.

  16. Kilner, P. J., G.-Z. Yang, A. J. Wilkes, M. R. H., D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Kim, W. Y., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping. JACC 26(1):224–238, 1995.

    PubMed  CAS  Google Scholar 

  18. Lemmon, J. D. and A. P. Yoganathan. Computational modeling of left herat diastolic function: Examination of ventricluar dysfunction. J. Biomech. Eng. 122:297–303, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Lemmon, J. D. and A. P. Yoganathan. Three-dimensional computational model of left heart diastolic function with fluid–structure interaction. J. Biomech. Eng. 122:109–117, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Lima, J. A. and M. Y. Desai. Cardiovascular magnetic resonance imaging: current and emerging applications. J Am Coll Cardiol 44(6):1164–1171, 2004.

    Article  PubMed  Google Scholar 

  21. Long, Q., R. Merrifield, G. Z. Yang, X. Y. Xu, P. J. Kilner, and D. N. Firmin. The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. 125:922–927, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance 1:7–21, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. McQueen, D. M. and C. Peskin. Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. J. Supercomput. 11(3):213–236, 1997.

    Article  Google Scholar 

  24. McQueen D. M., C. Peskin. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Comput. Graph. 34:56–60, 2000.

    Google Scholar 

  25. Mortensen, E. N., W. A. Barrett. Interactive segmentation with intelligent scissors. Graphical Models and Image Processing 60(5):349–384, 1998.

    Article  Google Scholar 

  26. Nakamura, M., S. Wada, T. Mikami, A. Kitabatake, and T. Karino. Computational study on the evolution of an intraventricular vortical flow during early diastole for the interpretation of color m-mode doppler echocardiogramms. Biomech. Model. Mechanobiol. 2:59–72, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Nash, M. P. and P. J. Hunter. Computational mechanics of the heart: From tissue structure to ventricular function. J. Elast. 61(1/3):113–141, 2000.

    Article  Google Scholar 

  28. Naujokat, E., and U. Kiencke. Neuronal and hormonal cardiac control processes in a model of the human circulatory system. Int. J. Bioelectromagn. 2(2), 2000.

  29. Noble, D. Modelling the heart: from genes to cells to the whole organ. Science 295:1678–1682, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.

    Google Scholar 

  31. Pelc, N. J., R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase contrast cine magnetic resonance imaging. Magn Reson Q 7(4):229–254, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Perktold, K., M. Prosi, and H. Florian. Computational models of arterial flow and mass transport. CISM Courses and Lectures (446):73–136, 2003.

    Google Scholar 

  33. Peskin, C. S., and D. M. McQueen. Fluid dynamics of the heart and its valves, case studies in mathematical modeling, In: Ecology, Physiology and Cell Biology. New Jersey: Pretice-Hall, 1996, pp. 309–337.

  34. Rebergen, S. A., E. E. van der Wall, J. Doornbos, and A. de Roos. Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J 126(6):1439–1456, 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Saber, N. R., A. D. Gosman, N. B. Wood, P. J. Kilner, C. L. Charrier, and D. N. Firmin. Computational flow modeling of the left ventricle based on in vivo mri data: Initial experience. Ann. Biomed. Eng. 29(4):275–283, 2001.

    Article  PubMed  CAS  Google Scholar 

  36. Saber, N. R., N. B. Wood, A. D. Gosman, R. D. Merrifield, G. Z. Yang, C. L. Charrier, P. D. Gatehouse, and D. N. Firmin. Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann. Biomed. Eng. 31(1):42–52, 2003.

    Article  PubMed  Google Scholar 

  37. Schenk, A., G. Prause, and H. Peitgen. Local cost computation for efficient segmentation of 3d objects with live wire. In: Proceedings of SPIE, edited by M. Sonka and K. M. Hanson. SPIE, Vol. 4322, 2001, pp. 1357–1364.

  38. Schoephoerster, R. T., C. L. Silva, and G. Ray. Evaluation of ventricular function based on simulated systolic flow dynamics computed from regional wall motion. J. Biomech. 27:125–136, 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Stalling, D., and H.-C. Hege. Intelligent scissors for medical image segmentation. In: Tagungsband zum 4. Freiburger Workshop: Digitale Bildverarbeitung in der Medizin, edited by B. Arnolds, H. Mueller, T. Saupe, and D. Tolxdorf, 1996, pp. 32–36.

  40. Taylor, T. W., H. Okino, and T. Yamaguchi. Three-dimensional analysis of left ventricular ejection using computational dynamics. J. Biomech. Eng. 116:127–130, 1994.

    Google Scholar 

  41. Vesier, C., J. D. Lemmon, R. A. Levine, and A. P. Yoganathan. A three-dimensional computational model of a thin-walled left ventricle. In: Proceedings on IEEE Supercomputing ’92, 16–20 November, 1992, pp. 73–82.

  42. Vierendeels, J. A., K. Riemslagh, and E. Dick. Computer simulation of intraventricular flow and pressure gradients during diastole. J. Biomech. Eng. 122:667–674, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Vierendeels, J. A., K. Riemslagh, E. Dick, and P. Verdonck. Computer simulation of left ventricular filling flow. Comput. Cardiol. 26:177–180, 1999.

    Google Scholar 

  44. Watanabe, H., T. Hisada, S. Sugiura, J. Okada, and H. Fukunari. Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid–structure interaction finite element method. JSME Int. J. Ser. C- Mech. Syst. Mach. Elem. Manufact. 45(4):1003–1012, 2002.

    Google Scholar 

  45. Watanabe, H., S. Sugiura, H. Kafuku, and T. Hisada. Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophysical J. 87:2074–2085, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all undergraduate, graduate and Ph.D. students that helped in developing the KaHMo. Especially we wish to thank Kathrin Spiegel who greatly simplified the tedious task of grid generation and Ron Schwarz from Fraunhofer FIT for the segmentation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Schenkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenkel, T., Malve, M., Reik, M. et al. MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart. Ann Biomed Eng 37, 503–515 (2009). https://doi.org/10.1007/s10439-008-9627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9627-4

Keywords

Navigation