Skip to main content
Log in

Sequential Multimodal Microscopic Imaging and Biaxial Mechanical Testing of Living Multicomponent Tissue Constructs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding relationships between mechanical stimuli and cellular responses require measurements of evolving tissue structure and mechanical properties. We developed a 3D tissue bioreactor that couples to both the stage of a custom multimodal microscopy system and a biaxial mechanical testing platform. Time dependent changes in microstructure and mechanical properties of fibroblast seeded cruciform fibrin gels were investigated while cultured under either anchored (1.0:1.0 stretch ratio) or strip biaxial (1.0:1.1) conditions. A multimodal nonlinear optical microscopy-optical coherence microscopy (NLOM-OCM) system was used to delineate noninvasively the relative spatial distributions of original fibrin, deposited collagen, and fibroblasts during month long culture. Serial in-culture mechanical testing was also performed to track the evolution of bulk mechanical properties under sterile conditions. Over the month long time course, seeded cells and deposited collagen were randomly distributed in equibiaxially anchored constructs, but exhibited preferential alignment parallel to the direction of the 10% stretch in constructs cultured under strip biaxial stretch. Surprisingly, both anchored and strip biaxial stretched constructs exhibited isotropic mechanical properties (including progressively increasing stiffness) despite developing a very different collagen microstructural organization. In summary, our biaxial bioreactor system integrating both NLOM-OCM and mechanical testing provided complementary information on microstructural organization and mechanical properties and, thus, may enable greater fundamental understanding of relationships between engineered soft tissue mechanics and mechanobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Bader, A., T. Schilling, O. E. Teebken, G. Brandes, T. Herden, G. Steinhoff, and A. Haverich. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14:279–284, 1998.

    Article  CAS  PubMed  Google Scholar 

  2. Bai, Y., P. Lee, H. C. Gibbs, K. J. Bayless, and A. T. Yeh. Dynamic multicomponent engineered tissue reorganization and matrix deposition measured with integrated NLOM-OCM system. J. Biomed. Opt. 19:36014, 2014.

    Article  PubMed  Google Scholar 

  3. Balestrini, J. L., and K. L. Billiar. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J. Biochem. 39:2983–2990, 2006.

    Google Scholar 

  4. Brown, R. A., R. Prajapati, D. A. McGrouther, I. V. Yannas, and M. Eastwood. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175:323–332, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: the role of biomechanics. J. Biomech. Eng. 122:570–575, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Chevallay, B., and D. Herbage. Collagen based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med. Biol. Eng. Comput. 38:211–218, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Chuong, C. J., and Y. C. Fung. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40, 1984.

    Article  CAS  PubMed  Google Scholar 

  8. Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen–fibrin mixtures. Biomaterials 25:3699–3706, 2004.

    Article  CAS  PubMed  Google Scholar 

  9. De Boer, J. F., B. Cense, B. Hgle Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28:2067–2069, 2003.

    Article  PubMed  Google Scholar 

  10. Eastwood, M., V. C. Mudera, D. A. McGrouther, and R. A. Brown. Effect of precise mechanical loading on fibroblast populated collagen lattices morphological changes. Cell Motil. Cytoskelet. 40:13–21, 1998.

    Article  CAS  Google Scholar 

  11. Freed, L. E., G. Vunjak-Novakovic, R. J. Biron, D. B. Eagles, D. C. Lesnoy, S. K. Barlow, and R. Langer. Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 12:689–693, 1994.

    Article  CAS  Google Scholar 

  12. Ghajar, C. M., K. S. Blevins, C. C. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12:2875–2888, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Grande, D. A., C. Halberstadt, G. Naughton, R. Schwartz, and R. Manji. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res. 34:211–220, 1997.

    Article  CAS  PubMed  Google Scholar 

  14. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. 66A:550–561, 2003.

    Article  CAS  Google Scholar 

  15. Hall, H., T. Baechi, and J. A. Hubbell. Molecular properties of fibrin-based matrices for promotion of angiogenesis in vitro. Microvasc. Res. 62:315–326, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Hartmann, A., P. Boukamp, and P. Friedl. Confocal reflection imaging of 3D fibrin polymers. Blood Cells Mol. 36:191–193, 2006.

    Article  CAS  Google Scholar 

  17. Hu, J–. J., J. D. Humphrey, and A. T. Yeh. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng. Part A 15:1553–1564, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Humphrey, J. D. Cardiovascular Solid Mechanics—Cells, Tissues and Organs, Chapter 3–5. New York: Springer, 2002, 68 pp.

  19. Humphrey, J. D., P. B. Wells, S. Baek, J.-J. Hu, K. McLeroy, and A. T. Yeh. A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomech. Model. Mechanobiol. 7:323–334, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Janmey, P. A., J. P. Winer, and J. W. Weisel. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface 6:1–10, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Keyes, J. T., S. M. Borowicz, J. H. Rader, U. Utzinger, M. Azhar, and J. P. VandeGeest. Design and demonstration of a microbiaxialoptomechanical device for multiscale characterization of soft biological tissues with two-photon microscopy. MicroscMicroanal. 17:167–175, 2011.

  22. Kume, T., T. Akasaka, T. Kawamoto, H. Okura, N. Watanabe et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am. Heart J. 152:755.e1–755.e4, 2006.

  23. Lee, P.-F., A. Y. Yeh, and K. J. Bayless. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices. Exp. Cell Res. 315:396–410, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Long, J. L., and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue equivalents. Matrix Biol. 22:339–350, 2003.

    Article  CAS  PubMed  Google Scholar 

  25. Metzler, S. A., C. S. Digesu, J. I. Howard, S. D. Filip To, and J. N. Warnock. Live en face imaging of aortic valve leaflets under mechanical stress. Biomech. Model. Mechanobiol. 11(3–4):355–361, 2012.

    Article  PubMed  Google Scholar 

  26. Mudera, V. C., R. Pleass, M. Eastwood, R. Tarnuzzer, G. Schultz, P. Khaw, et al. Molecular responses of human dermal fibroblasts to dual cues: contact guidance and mechanical load. Cell Motil. Cytoskeleton 45:1–9, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Niklason, L. E., A. T. Yeh, E. A. Calle, Y. Bai, A. Valentin, and J. D. Humphrey. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl Acad. Sci. U.S.A. 107:3335–3339, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pizzo, A. M., K. Kokini, L. C. Vaughn, B. Z. Waisner, and S. L. Voytik-Harbin. Extracellular (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J. Appl. Physiol. 98:1909–1921, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Raub, C. B., V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92:2212–2222, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Raub, C. B., J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, et al. Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys. J. 94:2361–2373, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rho, J. Y., M. E. Roy, II, T. Y. Tsui, and G. M. Pharr. Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J. Biomed. Mater. Res. 45:48–54, 1999.

    Article  CAS  PubMed  Google Scholar 

  32. Rowe, S. L., S. Y. Lee, and J. P. Stegemann. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater. 3:59–67, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sander, E. A., V. H. Barocas, and R. T. Tranquillo. Initial fiber alignment pattern alters extracellular matrix synthesis in fibroblast-populated fibrin gel cruciforms and correlates with predicted tension. Ann. Biomed. Eng. 39:714–729, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Stella, J. A., J. Liao, Y. Hong, W. David Merryman, W. R. Wagner, and M. S. Sacks. Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 29:3228–3236, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tranquillo, R. T., T. S. Girton, B. A. Bromberek, T. G. Triebes, and D. L. Mooradian. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357, 1996.

    Article  CAS  PubMed  Google Scholar 

  36. Tuan, T.-L., A. Song, S. Chang, S. Younai, and M. E. Nimni. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 223:127–134, 1996.

    Article  CAS  PubMed  Google Scholar 

  37. Wu, Q., B. E. Applegate, and A. T. Yeh. Cornea microstructure and mechanical responses measured with nonlinear optical and optical coherence microscopy using sub-10-fs pulses. Biomed. Opt. Express 2:1135–1146, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Science Foundation (CBET-1033660 to A.T.Y and CMMI-1161423 to J.D.H.) and National Institutes of Health (R01 EB-008836 to L.E. Niklason and J.D.H.).

Disclosure

No competing financial interests exist for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin T. Yeh.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Lee, PF., Humphrey, J.D. et al. Sequential Multimodal Microscopic Imaging and Biaxial Mechanical Testing of Living Multicomponent Tissue Constructs. Ann Biomed Eng 42, 1791–1805 (2014). https://doi.org/10.1007/s10439-014-1019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1019-3

Keywords

Navigation