Skip to main content
Log in

Flow Imaging and Computing: Large Artery Hemodynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of our session at the International Bio-Fluid Mechanics Symposium and Workshop was at the International Bio-Fluid Mechanics Symponium and Workshop to review the state-of-the-art in, and identify future directions for, imaging and computational modeling of blood flow in the large arteries and the microcirculation. Naturally, talks in other sessions of the workshop overlapped this broad topic, and so here we summarize progress within the last decade in terms of the technical development and application of flow imaging and computing, rather than the knowledge derived from specific studies. We then briefly discuss ways in these tools may be extended, and their application broadened, in the next decade. Furthermore, owing to the conceptual division between the hemodynamics of large arteries, and those within the microcirculation, we review these regimes separately: The former here by Steinman and Taylor; and the latter in a separate paper by Cristini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23:704–713, 2004.

    Article  Google Scholar 

  2. Asakura, F., H. Tenjin, N. Sugawa, S. Kimura, and F. Oki. Evaluation of intra-aneurysmal blood flow by digital subtraction angiography: Blood flow change after coil embolization. Surg. Neurol. 59:309–318, 2003.

    Google Scholar 

  3. Augst, A. D., D. C. Barratt, A. D. Hughes, F. P. Glor, G. T. S. A. Mc, and X. Y. Xu. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images. J. Biomech. Eng. 125:218–222, 2003.

    Article  Google Scholar 

  4. Bale-Glickman, J., K. Selby, D. Saloner, and O. Savas. Experimental flow studies in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input conditions. J. Biomech. Eng. 125:38–48, 2003.

    Article  Google Scholar 

  5. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 31:565–586, 1994.

    Google Scholar 

  6. Bogren, H. G., R. H. Mohiaddin, P. J. Kilner, L. J. Jimenez-Borreguero, G. Z. Yang, and D. N. Firmin. Blood flow patterns in the thoracic aorta studied with three- directional MR velocity mapping: The effects of age and coronary artery disease. J. Magn. Reson. Imaging. 7:784–793, 1997.

    Google Scholar 

  7. Bogren, H. G., M. H. Buonocore, and R. J. Valente. Four-dimensional magnetic resonance velocity mapping of blood flow patterns in the aorta in patients with atherosclerotic coronary artery disease compared to age-matched normal subjects. J. Magn. Reson. Imaging 19:417–427, 2004.

    Article  Google Scholar 

  8. Botnar, R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: A comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33:137–144, 2000.

    Article  Google Scholar 

  9. Buonocore, M. H. Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn. Reson. Med. 40:210–226, 1998.

    Google Scholar 

  10. Byun, H. S., and K. Rhee. Intraaneurysmal flow changes affected by clip location and occlusion magnitude in a lateral aneurysm model. Med. Eng. Phys. 25:581–589, 2003.

    Article  Google Scholar 

  11. Cebral, J. R., P. J. Yim, R. Lohner, O. Soto, and P. L. Choyke. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9:1286–1299, 2002.

    Article  Google Scholar 

  12. Cheng, C. P., D. Parker, and C. A. Taylor. Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann. Biomed. Eng. 30:1020–1032, 2002.

    Article  Google Scholar 

  13. Cheng, C. P., R. J. Herfkens, and C. A. Taylor. Comparison of abdominal aortic hemodynamics between men and women at rest and during lower limb exercise. J. Vasc. Surg. 37:118–123, 2003.

    Google Scholar 

  14. Friedman, M. H., G. M. Hutchins, C. B. Bargeron, O. J. Deters, and F. F. Mark. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425–436, 1981.

    Article  Google Scholar 

  15. Friedman, M. H., and L. W. Ehrlich. Numerical simulation of aortic bifurcation flows: The effect of flow divider curvature. J. Biomech. 17:881–888, 1984.

    Article  Google Scholar 

  16. Friedman, M. H., C. B. Bargeron, D. D. Duncan, G. M. Hutchins, and F. F. Mark. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. J. Biomech. Eng. 114:317–320, 1992.

    Google Scholar 

  17. Gijsen, F. J., F. N. van de Vosse, and J. D. Janssen. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32:601–608, 1999.

    Google Scholar 

  18. Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31:142–151, 2003.

    Article  Google Scholar 

  19. Gnasso, A., C. Irace, C. Carallo, M. S. De Franceschi, C. Motti, P. L. Mattioli, and A. Pujia. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 28:993–998, 1997.

    Google Scholar 

  20. Hassan, T., E. V. Timofeev, M. Ezura, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Hemodynamic analysis of an adult vein of Galen aneurysm malformation by use of 3D image-based computational fluid dynamics. AJNR Am. J. Neuroradiol. 24:1075–1082, 2003.

    Google Scholar 

  21. Hassan, T., M. Ezura, E. V. Timofeev, T. Tominaga, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am. J. Neuroradiol. 25:63–68, 2004.

    Google Scholar 

  22. Hoskins, P. R. Quantitative techniques in arterial Doppler ultrasound. Clin. Phys. Physiol. Measure 11(Suppl A):75–80, 1990.

    Google Scholar 

  23. Hyun, S., C. Kleinstreuer, and J. P. Archie Jr. Computer simulation and geometric design of endarterectomized carotid artery bifurcations. Crit. Rev. Biomed. Eng. 28:53–59, 2000.

    Google Scholar 

  24. Irace, C., C. Cortese, E. Fiaschi, C. Carallo, E. Farinaro, and A. Gnasso. Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk. Stroke 35:464–468, 2004.

    Article  Google Scholar 

  25. Jou, L. D., C. M. Quick, W. L. Young, M. T. Lawton, R. Higashida, A. Martin, and D. Saloner. Computational approach to quantifying hemodynamic forces in giant cerebral aneurysms. AJNR Am. J. Neuroradiol. 24:1804–1810, 2003.

    Google Scholar 

  26. Jou, L. D., J. Rapp, and D. Saloner. Transport of contrast agents in contrast-enhanced magnetic resonance angiography. Magn. Reson. Imaging. 22:495–504, 2004.

    Google Scholar 

  27. Khoshniat, M., M. L. Thorne, T. L. Poepping, S. Hirji, D. W. Holdsworth, and D. A. Steinman. Real-time numerical simulation of Doppler ultrasound in the presence of non-axial flow. Ultrasound Med. Biol. 31:519–528, 2005.

    Article  Google Scholar 

  28. Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  Google Scholar 

  29. Kim, T., A. Y. Cheer, and H. A. Dwyer. A simulated dye method for flow visualization with a computational model for blood flow. J. Biomech. 37:1125–1136, 2004.

    Google Scholar 

  30. Kini, V., C. Bachmann, A. Fontaine, S. Deutsch, and J. M. Tarbell. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif. Organs 25:136–145, 2001.

    Article  Google Scholar 

  31. Kleinstreuer, C., S. Hyun, J. R. Buchanan, Jr., P. W. Longest, J. P. Archie Jr., and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29:1–64, 2001.

    Google Scholar 

  32. Kornet, L., J. Lambregts, A. P. Hoeks, and R. S. Reneman. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler. Thromb. Vasc. Biol. 18:1877–1884, 1998.

    Google Scholar 

  33. Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17:2061–2065, 1997.

    Google Scholar 

  34. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    Google Scholar 

  35. Lagana, K., G. Dubini, F. Migliavacca, R. Pietrabissa, G. Pennati, A. Veneziani, and A. Quarteroni. Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364, 2002.

    Google Scholar 

  36. Lei, M., C. Kleinstreuer, and G. A. Truskey. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med. Eng. Phys. 18:326–332, 1996.

    Article  Google Scholar 

  37. Lei, M., J. P. Archie, and C. Kleinstreuer. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25:637–646, 1997.

    Article  Google Scholar 

  38. Lesniak, B., K. Kaluzynski, D. Liepsch, and T. Palko. The discrimination of stenosed carotid bifurcation models with smooth and irregular plaque surface. Part I. Laser and ultrasonic Doppler flow studies. Med. Eng. Phys. 24:309–318, 2002.

    Google Scholar 

  39. Lieber, B. B., and M. J. Gounis. The physics of endoluminal stenting in the treatment of cerebrovascular aneurysms. Neurol. Res. 24(Suppl 1):S33–S42, 2002.

    Article  Google Scholar 

  40. Long, Q., X. Y. Xu, U. Kohler, M. B. Robertson, I. Marshall, and P. Hoskins. Quantitative comparison of CFD predicted and MRI measured velocity fields in a carotid bifurcation phantom. Biorheology 39:467–474, 2002.

    Google Scholar 

  41. Lou, Z., and W. J. Yang. A computer simulation of the non-Newtonian blood flow at the aortic bifurcation. J. Biomech. 26:37–49, 1993.

    Google Scholar 

  42. Lou, Z., and W. J. Yang. A computer simulation of the blood flow at the aortic bifurcation with flexible walls. J. Biomech. Eng. 115:306–315, 1993.

    Google Scholar 

  43. Ma, P., X. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.

    Article  Google Scholar 

  44. Migliavacca, F., M. R. de Leval, G. Dubini, and R. Pietrabissa. A computational pulsatile model of the bidirectional cavopulmonary anastomosis: The influence of pulmonary forward flow. J. Biomech. Eng. 118:520–528, 1996.

    Google Scholar 

  45. Migliavacca, F., G. Dubini, E. L. Bove, and M. R. de Leval. Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: The influence of the inferior caval anastomosis. J. Biomech. Eng. 125:805–813, 2003.

    Article  Google Scholar 

  46. Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28:143–156, 1998.

    Article  Google Scholar 

  47. Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech. Eng. 119:469–475, 1997.

    Google Scholar 

  48. Moore, J. A., B. K. Rutt, S. J. Karlik, K. Yin, and C. R. Ethier. Computational blood flow modeling based on in vivo measurements. Ann. Biomed. Eng. 27:627–640, 1999.

    Google Scholar 

  49. Moore, J. A., D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Eng. 27:32–41, 1999.

    Google Scholar 

  50. Moore, J. E., Jr., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. J. Biomech. Eng. 116:107–111, 1994.

    Google Scholar 

  51. Oyre, S., W. P. Paaske, S. Ringgaard, S. Kozerke, M. Erlandsen, P. Boesiger, and E. M. Pedersen. Automatic accurate non-invasive quantitation of blood flow, cross-sectional vessel area, and wall shear stress by modelling of magnetic resonance velocity data. Eur. J. Vasc. Endovasc. Surg. 16:517–524, 1998.

    Article  Google Scholar 

  52. Papathanasopoulou, P., S. Zhao, U. Kohler, M. B. Robertson, Q. Long, P. Hoskins, X. Yun Xu, and I. Marshall. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17:153–162, 2003.

    Article  Google Scholar 

  53. Pelc, N. J., R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 7:229–254, 1991.

    Google Scholar 

  54. Perktold, K., H. Florian, and D. Hilbert. Analysis of pulsatile blood flow: A carotid siphon model. J. Biomed. Eng. 9:46–53, 1987.

    Google Scholar 

  55. Perktold, K., and R. Peter. Numerical 3D-stimulation of pulsatile wall shear stress in an arterial T-bifurcation model. J. Biomed. Eng. 12:2–12, 1990.

    Google Scholar 

  56. Perktold, K., R. M. Nerem, and R. O. Peter. A numerical calculation of flow in a curved tube model of the left main coronary artery. J. Biomech. 24:175–189, 1991.

    Google Scholar 

  57. Perktold, K., R. O. Peter, M. Resch, and G. Langs. Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: A numerical study of flow phenomena under different bifurcation angles. J. Biomed. Eng. 13:507–515, 1991.

    Google Scholar 

  58. Perktold, K., M. Resch, and H. Florian. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113:464–475, 1991.

    Google Scholar 

  59. Perktold, K., M. Resch, and R. O. Peter. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech. 24:409–420, 1991.

    Google Scholar 

  60. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  Google Scholar 

  61. Perktold, K., M. Hofer, G. Rappitsch, M. Loew, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.

    Google Scholar 

  62. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J Biomech Eng. 123:134–144, 2001.

    Article  Google Scholar 

  63. Rappitsch, G., and K. Perktold. Pulsatile albumin transport in large arteries: A numerical simulation study. J. Biomech. Eng. 118:511–519, 1996.

    Google Scholar 

  64. Ryval, J., A. G. Straatman, and D. A. Steinman. Two-equation turbulence modelling of pulsatile flow in a stenosed tube. J. Biomech. Eng. 126:625–635, 2004.

    Article  Google Scholar 

  65. Sadasivan, C., B. B. Lieber, M. J. Gounis, D. K. Lopes, and L. N. Hopkins. Angiographic quantification of contrast medium washout from cerebral aneurysms after stent placement. AJNR Am. J. Neuroradiol. 23:1214–1221, 2002.

    Google Scholar 

  66. Smedby, O. Angiographic methods for the study of fluid mechanical factors in atherogenesis. Acta Radiol. Suppl. 380:1–38, 1992.

    Google Scholar 

  67. Smedby, O., N. Hogman, S. Nilsson, and U. Erikson. Flow disturbances in early femoral atherosclerosis—An in vivo study with digitized cineangiography. J. Biomech. 26:1105–1115, 1993.

    Google Scholar 

  68. Smedby, O., S. Nilsson, and L. Bergstrand. Development of femoral atherosclerosis in relation to flow disturbances. J. Biomech. 29:543–547, 1996.

    Article  Google Scholar 

  69. Steinke, W., C. Kloetzsch, and M. Hennerici. Variability of flow patterns in the normal carotid bifurcation. Atherosclerosis 84:121–127, 1990.

    Article  Google Scholar 

  70. Steinman, D. A., and C. R. Ethier. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J. Biomech. Eng. 116:294–301, 1994.

    Google Scholar 

  71. Steinman, D. A. Simulated pathline visualization of computed periodic blood flow patterns. J. Biomech. 33:623–628, 2000.

    Article  Google Scholar 

  72. Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.

    Article  Google Scholar 

  73. Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47:149–159, 2002.

    Article  Google Scholar 

  74. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24:559–566, 2003.

    Google Scholar 

  75. Stone, P. H., A. U. Coskun, S. Kinlay, M. E. Clark, M. Sonka, A. Wahle, O. J. Ilegbusi, Y. Yeghiazarians, J. J. Popma, J. Orav, R. E. Kuntz, and C. L. Feldman. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: In vivo 6-month follow-up study. Circulation 108:438–444, 2003.

    Google Scholar 

  76. Stroud, J. S., S. A. Berger, and D. Saloner. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124:9–20, 2002.

    Article  Google Scholar 

  77. Taylor, C., T. Hughes, and C. Zarins. Computational Investigations in Vascular Disease. Comput. Phys. 10:224–232, 1996.

    Google Scholar 

  78. Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision-making. Comput. Aided Surg. 4:231–247, 1999.

    Article  Google Scholar 

  79. Taylor, C. A., T. J. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vasc. Surg. 29:1077–1089, 1999.

    Article  Google Scholar 

  80. Thomas, J. B., J. S. Milner, B. K. Rutt, and D. A. Steinman. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31:132–141, 2003.

    Article  Google Scholar 

  81. Thury, A., G. van Langenhove, S. G. Carlier, M. Albertal, K. Kozuma, E. Regar, G. Sianos, J. J. Wentzel, R. Krams, C. J. Slager, J. J. Piek, and P. W. Serruys. High shear stress after successful balloon angioplasty is associated with restenosis and target lesion revascularization. Am. Heart J. 144:136–143, 2002.

    Article  Google Scholar 

  82. Travis, B. R., H. L. Leo, P. A. Shah, D. H. Frakes, and A. P. Yoganathan. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124:155–165, 2002.

    Article  Google Scholar 

  83. Varghese, S. S., and S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.

    Article  Google Scholar 

  84. Wells, D. R., J. P. Archie Jr., and C. Kleinstreuer. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J. Vasc. Surg. 23:667–678, 1996.

    Google Scholar 

  85. Wentzel, J. J., J. Kloet, I. Andhyiswara, J. A. Oomen, J. C. Schuurbiers, B. J. de Smet, M. J. Post, D. de Kleijn, G. Pasterkamp, C. Borst, C. J. Slager, and R. Krams. Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: effect of matrix metalloproteinase inhibition. Circulation 104:91–96, 2001.

    Google Scholar 

  86. Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Google Scholar 

  87. Xu, X. Y., and M. W. Collins. A review of the numerical analysis of blood flow in arterial bifurcations. Proc. Inst. Mech. Eng. [H]. 204:205–216, 1990.

    Google Scholar 

  88. Xu, X. Y., Q. Long, M. W. Collins, M. Bourne, and T. M. Griffith. Reconstruction of blood flow patterns in human arteries. Proc. Inst. Mech. Eng. [H]. 213:411–421, 1999.

    Article  Google Scholar 

  89. Younis, H. F., M. R. Kaazempur-Mofrad, C. Chung, R. C. Chan, and R. D. Kamm. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation. Ann. Biomed. Eng. 31:995–1006, 2003.

    Article  Google Scholar 

  90. Zhao, S. Z., B. Ariff, Q. Long, A. D. Hughes, S. A. Thom, A. V. Stanton, and X. Y. Xu. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35:1367–1377, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Steinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinman, D.A., Taylor, C.A. Flow Imaging and Computing: Large Artery Hemodynamics. Ann Biomed Eng 33, 1704–1709 (2005). https://doi.org/10.1007/s10439-005-8772-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-8772-2

Keywords

Navigation