Skip to main content

Mathematical Modeling of Blood Flow in the Cardiovascular System

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

This chapter gives a short overview of the mathematical modeling of blood flow at different resolutions, from the large vessel scale (three-dimensional, one-dimensional, and zero-dimensional modeling) to microcirculation and tissue perfusion. The chapter focuses first on the formulation of the mathematical modeling, discussing the underlying physical laws, the need for suitable boundary conditions, and the link to clinical data. Recent applications related to medical imaging are then discussed, in order to highlight the potential of computer simulation and of the interplay between modeling, imaging, and experiments in order to improve clinical diagnosis and treatment. The chapter ends presenting some current challenges and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 2006;195(29):3776–96.

    Article  Google Scholar 

  2. Arbia G, Corsini C, Moghadam M, Marsden A, Migliavacca F, Pennati G, Hsia T, Vignon-Clementel I, Allianc MCH. Numerical blood flow simulation in surgical corrections: what do we need for an accurate analysis? J Surg Res. 2014;186:44–55.

    Article  PubMed  Google Scholar 

  3. Vignon-Clementel IE, Marsden AL, Feinstein JA. A primer on computational simulation in congenital heart disease for the clinician. Prog Pediatr Cardiol. 2010;30:3–13.

    Article  Google Scholar 

  4. Arbia G, Corsini C, Baker C, Pennati G, Hsia TY, Vignon-Clementel IE. Pulmonary hemodynamics simulations before stage 2 single ventricle surgery: patient-specific parameter identification and clinical data assessment. Cardiovasc Eng Technol. 2015;6(3):268–80.

    Article  PubMed  Google Scholar 

  5. Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE. Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J Biomech Eng Trans ASME. 2011;133(11):111006.

    Article  CAS  Google Scholar 

  6. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A. Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J Numer Anal. 2002;40(1):376–401.

    Article  Google Scholar 

  7. Malossi A, Blanco P, Deparis S, Quarteroni A. Algorithms for the partitioned solution of weakly coupled fluid models for cardiovascular flows. Int J Numer Methods Biomed Eng. 2011;27(12):2035–57.

    Article  Google Scholar 

  8. Moghadam M, Vignon-Clementel I, Figliola R, Marsden A. A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. J Comput Phys. 2013;244:63–79.

    Article  Google Scholar 

  9. Quarteroni A, Ragni S, Veneziani A. Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci. 2001;4:111–24.

    Article  Google Scholar 

  10. Chapelle D, Bathe K. The finite element analysis of shells – fundamentals. Berlin Heidelberg: Springer; 2003.

    Book  Google Scholar 

  11. Gerbeau JF, Vidrascu M, Frey P. Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct. 2005;83(2–3):155–65.

    Article  Google Scholar 

  12. Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor C, Gerbeau JF. External tissue support and fluid–structure simulation in blood flows. Biomech Model Mechanobiol. 2012;11(1–2):1–18.

    Article  CAS  PubMed  Google Scholar 

  13. Astorino M, Chouly F, Fernández M. An added-mass free semi-implicit coupling scheme for fluid-structure interaction. C R Acad Sci Paris Sér I Math. 2009;347(1–2):99–104.

    Article  Google Scholar 

  14. Badia S, Nobile F, Vergara C. Fluid-structure partitioned procedures based on Robin transmission conditions. J Comput Phys. 2008;227:7027–51.

    Article  Google Scholar 

  15. Fernández M, Gerbeau JF. Fluid structure interaction problems in haemodynamics, Chap. 9. In: Formaggia L, Quarteroni A, Veneziani A, editors. Cardiovascular mathematics. Modeling and simulation of the circulatory system. Milano: Springer Verlag; 2009.

    Google Scholar 

  16. Figueroa A, Vignon-Clementel I, Jansen K, Hughes T, Taylor C. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng. 2006;195(41):5685–706.

    Article  Google Scholar 

  17. Quarteroni A, Veneziani A, Vergara C. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput Methods Appl Mech Eng. 2016;302:193–252.

    Article  Google Scholar 

  18. Müller LO, Toro EF. A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int J Numer Methods Biomed Eng. 2014;30:681–725.

    Article  Google Scholar 

  19. Formaggia L, Lamponi D, Quarteroni A. One-dimensional models for blood flow in arteries. J Eng Math. 2003;47:251–76.

    Article  Google Scholar 

  20. Hughes TJ, Lubliner J. On the one-dimensional theory of blood flow in the larger vessels. Math Biosci. 1973;18(1):161–70.

    Article  Google Scholar 

  21. Wang XF, Ghigo A, Nishi S, Matsukawa M, Lagrée PY, Fullana J. Fluid friction and wall viscosity of the 1D blood flow model: study with an in-vitro experimental setup. J Biomech. 2016;49:565–71.

    Article  PubMed  Google Scholar 

  22. Müller LO, Blanco PJ, Watanabe SM, Feijóo R. A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: application to the Adan model. Int J Numer Methods Biomed Eng. 2016;32(10): n/a–n/a.

    Google Scholar 

  23. Müller LO, Toro EF. Well-balanced high-order solver for blood flow in networks of vessels with variable properties. Int J Numer Methods Biomed Eng. 2013;29(12):1388–411.

    Article  Google Scholar 

  24. Toro EF. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. 3rd ed. Berlin Heidelberg: Springer; 2009. ISBN 978-3-540-25202-3.

    Book  Google Scholar 

  25. Audebert C, Bucur P, Bekheit M, Vibert E, Vignon-Clementel IE, Gerbeau JF. Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling. Comput Methods Appl Mech Eng. 2017;314:102–25.

    Article  Google Scholar 

  26. Boileau E, Nithiarasu P, Blanco PJ, Müller LO, Fossan FE, Hellevik LR, Donders WP, Huberts W, Willemet M, Alastruey J. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int J Numer Methods Biomed Eng. 2015;31(10): n/a–n/a.

    Google Scholar 

  27. Caiazzo A, Caforio F, Montecinos G, Müller LO, Blanco PJ, Toro EF. Assessment of reduced order Kalman filter for parameter identification in one-dimensional blood flow models using experimental data. Tech. Rep. 2248, WIAS; 2016.

    Google Scholar 

  28. Dumas L, El Bouti T, Lucor D. A robust and subject-specific hemodynamic model of the lower limb based on noninvasive arterial measurements. J Biomech Eng. 2017;139(1):011002.

    Article  Google Scholar 

  29. Formaggia L, Quarteroni A, Veneziani A, editors. Cardiovascular mathematics. Modeling and simulation of the circulatory system. Modeling, simulation and applications, vol. 1. Milano: Springer; 2009.

    Google Scholar 

  30. Liang F, Liu H. A closed-loop lumped parameter computational model for human cardiovascular system. JSME Int J. 2005;48(4):484–93.

    Article  Google Scholar 

  31. Pant S, Corsini C, Baker C, Hsia TY, Pennati G, Vignon-Clementel IE, for MOCHA. Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation. J Biomech. 2016;49(11):2162–73.

    Article  PubMed  Google Scholar 

  32. Corsini C, Baker C, Kung E, Schievano S, Arbia G, Baretta A, Biglino G, Migliavacca F, Dubini G, Pennati G, Marsden A, Vignon-Clementel I, Taylor A, Hsia T, Dorfman A, Hearts MC. An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Comput Methods Biomech Biomed Eng. 2014;17:1572–89.

    Article  Google Scholar 

  33. Serban R, Petra C, Hindmarsh A. User documentation of ida v27.0. 2015.

    Google Scholar 

  34. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng. 2010;13:625–40.

    Article  CAS  Google Scholar 

  35. Frank O. Die Grundform des arteriellen Pulses. Z Biol. 1899;37:483526.

    Google Scholar 

  36. Pant S, Fabrèges B, Gerbeau JF, Vignon-Clementel I. A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis. Int J Numer Methods Biomed Eng. 2014;30(12):1614–48.

    Article  CAS  Google Scholar 

  37. Olufsen MS. Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol Heart Circ Physiol. 1999;276(1):H257–68.

    Article  CAS  Google Scholar 

  38. Spilker R, Feinstein J, Parker D, Reddy V, Taylor C. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann Biomed Eng. 2007;35(4):546–59.

    Article  PubMed  Google Scholar 

  39. Debbaut C, Monbaliu D, Casteleyn C, Cornillie P, Van Loo D, Masschaele B, Pirenne J, Simoens P, Van Hoorebeke L, Segers P. From vascular corrosion cast to electrical analog model for the study of human liver hemodynamics and perfusion. IEEE Trans Biomed Eng. 2011;58(1):25–35.

    Article  PubMed  Google Scholar 

  40. Schwen LO, Preusser T. Analysis and algorithmic generation of hepatic vascular systems. Int J Hepatol. 2012:1–17. https://doi.org/10.1155/2012/357687.

  41. Schwen LO, Krauss M, Niederalt C, Gremse F, Kiessling F, Schenk A, Preusser T, Kuepfer L. Spatio-temporal simulation of first pass drug perfusion in the liver. PLoS Comput Biol. 2014;10(3):e1003499.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schreiner W, Buxbaum P. Computer-optimization of vascular trees. IEEE Trans Biomed Eng. 1993;40(5):482–91.

    Article  CAS  PubMed  Google Scholar 

  43. Causin P, Guidoboni G, Malgaroli F, Sacco R, Harris A. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol. 2016;15(3):525–42.

    Article  PubMed  Google Scholar 

  44. Mescam M, Kretowski M, Bezy-Wendling J. Multiscale model of liver dce-mri towards a better understanding of tumor complexity. IEEE Trans Med Imaging. 2010;29(3):699–707.

    Article  PubMed  Google Scholar 

  45. Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels. Hypertension. 2005;46(4):725–31.

    Article  CAS  PubMed  Google Scholar 

  46. Stamatelos SK, Kim E, Pathak AP, Popel AS. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc Res. 2014;91:8–21.

    Article  PubMed  Google Scholar 

  47. Debbaut C, Vierendeels J, Casteleyn C, Cornillie P, Van Loo D, Simoens P, Van Hoorebeke L, Monbaliu D, Segers P. Perfusion characteristics of the human hepatic microcirculation based on three-dimensional reconstructions and computational fluid dynamic analysis. J Biomech Eng. 2012;134(1):011003.

    Article  PubMed  Google Scholar 

  48. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P. Resistance to blood flow in microvessels in vivo. Circ Res. 1994;75:904–15.

    Article  CAS  PubMed  Google Scholar 

  49. Yang W, Feinstein JA, Vignon-Clementel IE. Adaptive outflow boundary conditions improve post-operative predictions after repair of peripheral pulmonary artery stenosis. Biomech Model Mechanobiol. 2016;15(5):1345–53.

    Article  PubMed  Google Scholar 

  50. Pries AR, Reglin B, Secomb T. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Phys. 2001;281:H1015–25.

    CAS  Google Scholar 

  51. Aletti M, Gerbeau JF, Lombardi D. Modeling autoregulation in three-dimensional simulations of retinal hemodynamics. Journal for Modeling in Ophthalmology 2016;1:88–115.

    Google Scholar 

  52. Secomb TW, Alberding JP, Hsu R, Dewhirst MW, Pries AR. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol. 2013;9(3):e1002983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drasdo D, Jagiella N, Ramis-Conde I, Vignon-Clementel IE, Weens W. Modeling steps from a begnin tumor to an invasive cancer: examples of instrinsically multiscale problems. Boca Raton: Taylor & Francis; 2010. p. 379–416.

    Google Scholar 

  54. Gillespie DT. Exact stochastical simulations of coupled chemical reactions. J Phys Chem. 1977;81(25):2340–61.

    Article  CAS  Google Scholar 

  55. Debbaut C, Vierendeels J, Siggers JH, Repetto R, Monbaliu D, Segers P. A 3d porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Comput Methods Biomech Biomed Eng. 2014;17(12):1295–310.

    Article  Google Scholar 

  56. Ricken T, Werner D, Holzhütter H, König M, Dahmen U, Dirsch O. Modeling function–perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale pde–ode approach. Biomech Model Mechanobiol. 2015;14(3):515–36.

    Article  CAS  PubMed  Google Scholar 

  57. Cookson A, Lee J, Michler C, Chabiniok R, Hyde E, Nordsletten D, Sinclair M, Siebes M, Smith N. A novel porous mechanical framework for modelling the interaction between coronary perfusion and myocardial mechanics. J Biomech. 2012;45(5):850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cattaneo L, Zunino P. A computational model of drug delivery through microcirculation to compare different tumor treatments. Int J Numer Methods Biomed Eng. 2014;30(11):1347–71.

    Article  CAS  Google Scholar 

  59. D’Angelo C, Quarteroni A. On the coupling of 1d and 3d diffusion-reaction equations: application to tissue perfusion problems. Math Models Methods Appl Sci. 2008;18(08):1481–504.

    Article  Google Scholar 

  60. Nolte F, Hyde ER, Rolandi C, Lee J, van Horssen P, Asrress K, van den Wijngaard JP, Cookson AN, van de Hoef T, Chabiniok R, et al. Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multi-scale modeling, a review. Med Biol Eng Comput. 2013;51(11):1271–86.

    Article  PubMed  Google Scholar 

  61. Spaan J, Kolyva C, van den Wijngaard J, ter Wee R, van Horssen P, Piek J, Siebes M. Coronary structure and perfusion in health and disease. Phil Trans R Soc A. 2008;366(1878):3137–53.

    Article  PubMed  Google Scholar 

  62. Smith N. A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol Meas. 2004;25(4):863–77.

    Article  PubMed  Google Scholar 

  63. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev. 2006;86(4):1263–308.

    Article  CAS  PubMed  Google Scholar 

  64. Huyghe J, Arts T, van Campen D. Porous medium finite element model of the beating left ventricle. Am J Phys. 1992;262:H1256–67.

    CAS  Google Scholar 

  65. Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. II higher frequency range. J Acoust Soc Am. 1956;28:179–91.

    Article  Google Scholar 

  66. Biot MA. Theory of finite deformations of porous solids. Indiana Univ Math J. 1972;21:597–620.

    Article  Google Scholar 

  67. Chapelle D, Gerbeau JF, Sainte-Marie J, Vignon-Clementel I. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech. 2010;46:91–101.

    Article  Google Scholar 

  68. Coussy O. Mechanics of porous continua. New York: Wiley; 1995.

    Google Scholar 

  69. Ciarlet PG, Geymonat G. Sur les lois de comportement en élasticité non linéaire. C R Acad Sci Sér II. 1982;295:423–6.

    Google Scholar 

  70. Yeung JJ, Kim HJ, Abbruzzese TA, Vignon-Clementel IE, Draney-Blomme MT, Yeung KK, Perkash I, Herfkens RJ, Taylor CA, Dalman RL. Aortoiliac hemodynamic and morphologic adaptation to chronic spinal cord injury. J Vasc Surg. 2006;44(6):1254–65.

    Article  PubMed  Google Scholar 

  71. LaDisa J, John F, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA, et al. Congenit Heart Dis. 2011;6(5):432–43.

    Article  PubMed  PubMed Central  Google Scholar 

  72. DeVault K, Gremaud PA, Novak V, Olufsen MS, Vernires G, Zhao P. Blood flow in the circle of Willis: modeling and calibration. Multiscale Model Simul. 2008;7(2):888–909.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Moireau P, Chapelle D. Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM Control Optim Calc Var. 2011;17:380–405.

    Article  Google Scholar 

  74. Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech. 2011;44:2250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Matthys KS, Alastruey J, Peiró J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin SJ. Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J Biomech. 2007;40(15):3476–86.

    Article  PubMed  Google Scholar 

  76. Julier S, Uhlmann J. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: Proceedings of IEEE American Control Conference; 2002. pp. 887–892.

    Google Scholar 

  77. Kalman R, Bucy R. New results in linear filtering and prediction theory. Trans ASME J Basic Eng. 1961;83:95–108.

    Article  Google Scholar 

  78. Bradley C, Bowery A, Britten R, Budelmann V, Camara O, Christie R, Cookson A, Frangi AF, Gamage TB, Heidlauf T, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Prog Biophys Mol Biol. 2011;107(1):32–47.

    Article  PubMed  Google Scholar 

  79. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M. Modeling and estimation of the cardiac electromechanical activity. Comput Struct. 2006;84:1743–59.

    Article  Google Scholar 

  80. Ghista D, Ng E. Cardiac perfusion and pumping engineering. Hackensack: World Scientific; 2007.

    Book  Google Scholar 

  81. Vuong AT, Yoshihara L, Wall W. A general approach for modeling interacting flow through porous media under finite deformations. Comput Methods Appl Mech Eng. 2015;283:1240–59.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Bertoglio, D. Lombardi, and L. O. Müller for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Caiazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caiazzo, A., Vignon-Clementel, I.E. (2018). Mathematical Modeling of Blood Flow in the Cardiovascular System. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics