Skip to main content
Log in

Static and dynamic responses of a microcantilever with a T-shaped tip mass to an electrostatic actuation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, nonlinear static and dynamic responses of a microcantilever with a T-shaped tip mass excited by electrostatic actuations are investigated. The electrostatic force is generated by applying an electric voltage between the horizontal part of T-shaped tip mass and an opposite electrode plate. The cantilever microbeam is modeled as an Euler–Bernoulli beam. The T-shaped tip mass is assumed to be a rigid body and the nonlinear effect of electrostatic force is considered. An equation of motion and its associated boundary conditions are derived by the aid of combining the Hamilton principle and Newton’s method. An exact solution is obtained for static deflection and mode shape of vibration around the static position. The differential equation of nonlinear vibration around the static position is discretized using the Galerkin method. The system mode shapes are used as its related comparison functions. The discretized equations are solved by the perturbation theory in the neighborhood of primary and subharmonic resonances. In addition, effects of mass inertia, mass moment of inertia as well as rotation of the T-shaped mass, which were ignored in previous works, are considered in the analysis. It is shown that by increasing the length of the horizontal part of the T-shaped mass, the amount of static deflection increases, natural frequency decreases and nonlinear shift of the resonance frequency increases. It is concluded that attaching an electrode plate with a T-shaped configuration to the end of the cantilever microbeam results in a configuration with larger pull-in voltage and smaller nonlinear shift of the resonance frequency compared to the configuration in which the electrode plate is directly attached to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Gaura, E., Newman, R.: Smart MEMS and Sensor Systems. Imperial College Press, London (2006)

    Book  Google Scholar 

  2. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, New York (2011)

    Book  Google Scholar 

  3. Xu, L., Jia, X.: Electromechanical coupled nonlinear dynamics for microbeams. Arch. Appl. Mech. 77, 485–502 (2007)

    Article  MATH  Google Scholar 

  4. Chaterjee, S., Pohit, G.: A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J. Sound Vib. 322, 969–986 (2009)

    Article  Google Scholar 

  5. Rasekh, M., Khadem, S.E.: Pull-in analysis of an electrostatically actuated nano-cantilever beam with nonlinearity in curvature and inertia. Int. J. Mech. Sci. 53, 108–115 (2011)

    Article  Google Scholar 

  6. Zhang, Y., Zhao, Y.: Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sens. Actuators A 127, 366–380 (2006)

    Article  Google Scholar 

  7. Fang, Y., Li, P.: A new approach and model for accurate determination of the dynamic pull-in parameters of microbeam actuated by a step voltage. Micromech. Microeng. 23, 045010–045021 (2013)

    Article  Google Scholar 

  8. Huang, Y.T., Chen, H.L., Hsu, W.: An analytical model for calculating the pull-in voltage of micro cantilever beams subjected to tilted and curled effects. Microelectron. Eng. 125, 73–77 (2014)

    Article  Google Scholar 

  9. Rahaeifard, M., Ahmadian, M.T.: On pull-in instabilities of microcantilevers. Int. J. Eng. Sci. 87, 23–31 (2015)

    Article  Google Scholar 

  10. Yin, L., Qian, Q., Wang, L.: Size effect on the static behavior of electrostatically actuated microbeams. Acta Mech. Sin. 27, 445–451 (2011)

    Article  MATH  Google Scholar 

  11. Kong, S.: Size effect on pull-in behavior of electro-statically actuated micro-beams based on a modified couple stress theory. Appl. Math. Model. 37, 7481–7488 (2013)

    Article  MathSciNet  Google Scholar 

  12. Moeenfard, H., Ahmadian, M.T.: Analytical modeling of static behavior of electrostatically actuated nano/micromirrors considering van der Waals forces. Acta Mech. Sin. 28, 729–736 (2012)

    Article  Google Scholar 

  13. Xiao, L.J., Jie, Y., Kitipornchai, S.: Pull-in instability of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Acta. Mech. 218, 161–174 (2011)

    Article  MATH  Google Scholar 

  14. Boudjiet, M.T., Bertrand, J., Mathieu, F., et al.: Geometry optimization of uncoated silicon micro-cantilever-based gas density sensors. Sens. Actuators B 208, 600–607 (2015)

    Article  Google Scholar 

  15. Abdalla, M.M., Reddy, C.K., Waleed, F.F., et al.: Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage. Comput. Struct. 83, 1320–1329 (2005)

    Article  Google Scholar 

  16. Khushalani, D.G., Dubey, V.R., Bheley, P.P., et al.: Design optimization and fabrication of micro cantilever for switching application. Sens. Actuators A 225, 1–7 (2015)

    Article  Google Scholar 

  17. Younis, M.I., Nayfeh, A.H.: Study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  18. Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491–501 (2003)

    Article  Google Scholar 

  19. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840–1847 (2005)

    Article  Google Scholar 

  20. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., et al.: Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode. J. Vib. Control 16, 1321–1349 (2010)

  21. Najar, F., Nayfeh, A.H., Abdel-Rahman, E.M., et al.: Dynamics and global stability of beam-based electrostatic microactuators. J. Vib. Control 16, 721–748 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fu, Y.M., Zhang, J.: Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam. Acta Mech. Sin. 25, 211–218 (2009)

    Article  MATH  Google Scholar 

  23. Zhang, Y., Liu, Y., Murphy, Kevin D.: Nonlinear dynamic response of beam and its application in nanomechanical resonator. Acta Mech. Sin. 28, 190–200 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Younesian, D., Sadri, M., Esmailzadeh, E.: Primary and secondary resonance analyses of clamped–clamped micro-beams. Nonlinear Dyn. 76, 1867–1884 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hajnayeb, A., Khadem, S.E.: Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J. Sound Vib. 331, 2443–2456 (2012)

    Article  Google Scholar 

  27. Zamanian, M., Hosseini, S.: Secondary resonances of a microresonator under AC–DC electrostatic and DC piezoelectric actuations. Struct. Eng. Mech. 42, 677–699 (2012)

    Article  Google Scholar 

  28. Raeisifard, H., Zamanian, M.: Nikkhah Bahrami, M., et al.: On the nonlinear primary resonances of a piezoelectric laminated micro system under electrostatic control voltage. J. Sound Vib. 333, 5494–5510 (2014)

    Article  Google Scholar 

  29. Zamanian, M., Khadem, S.E., Mahmoodi, S.N.: Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations. Proc. Inst. Mech. 223, 329–344 (2009)

    Google Scholar 

  30. Wang, H., Meng, Q.: Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting. Mech. Syst. Signal Process. 36, 193–209 (2013)

    Article  MathSciNet  Google Scholar 

  31. Aboelkassem, Y., Nayfeh, A.H., Ghommem, M.: Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst. Technol. 16, 1749–1755 (2010)

    Article  Google Scholar 

  32. Khater, M.E., Al-Ghamdi, M., Park, S., et al.: Binary MEMS gas sensors. J. Micromech. Microeng. 24, 065007 (2014)

    Article  Google Scholar 

  33. Shaat, M., Abdelkefi, A.: Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs. Microsyst. Technol. 22, 305–318 (2015)

    Article  Google Scholar 

  34. Mokhtari-Nezhad, F., Saidi, A.R., Ziaei-Rad, S.: Influence of the tip mass and position on the AFM cantilever dynamics. Coupling between bending, torsion and flexural modes. Ultramicroscopy 109, 1193–1202 (2009)

    Article  Google Scholar 

  35. Farrokh Payam, A., Fathipour, M.: Study of the tip mass and interaction force effects on the frequency response and mode shapes of the AFM cantilever. Int. J Adv. Manuf. 65, 957–966 (2013)

    Article  Google Scholar 

  36. Mehdipour, I., Erfani-Moghadam, A., Mehdipour, C.: Application of an electrostatically actuated cantilevered carbon nanotube with an attached mass as a bio-mass sensor. Appl. Phys. 13, 1463–1469 (2013)

  37. Wu, D.H., Chien, W.T., Chen, C.S.: Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens. Actuators A 126, 117–121 (2006)

    Article  Google Scholar 

  38. Rasekh, M., Khadem, S.E.: Design and performance analysis of a nano-gyroscope based on electrostatic actuation and capacitive sensing. J. Sound Vib. 332, 6155–6168 (2013)

    Article  Google Scholar 

  39. Mojahedi, M., Ahmadian, M.T., Firoozbakhsh, K.: The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes. Compos. Part B 56, 336–343 (2014)

    Article  Google Scholar 

  40. Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)

  41. Nayfeh, A.H., Ouakad, H.M., Najar, F., et al.: Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 59, 607–618 (2010)

    Article  MATH  Google Scholar 

  42. Ouakad, H.M.: The response of a micro-electro-mechanical system (MEMS) cantilever-paddle gas sensor to mechanical shock loads. J. Vib. Control 21, 2739–2754 (2015)

    Article  MathSciNet  Google Scholar 

  43. Zamanian, M., Karimiyan, A.: Analysis of the mechanical behavior of a doubled microbeam configuration under electrostatic actuation. Int. J. Mech. Sci. 93, 82–92 (2015)

    Article  Google Scholar 

  44. Zamanian, M., Karimiyan, A., Hosseini, S.A.A., et al.: Nonlinear vibration analysis of a-shaped mass attached to a clamped-clamped microbeam under electrostatic actuation. Proc. Inst. Mech. Eng. C (2016) (in press). doi:10.1177/0954406215627832

  45. Tadayon, M.A., Rajaei, M., Sayyaadi, H., et al.: Nonlinear dynamics of microresonators. J. Phys. Conf. Ser. 34, 961–966 (2006)

    Article  Google Scholar 

  46. Sayyaadi, H., Tadayon, M.A., Eftekharian, A.A.: Micro resonator nonlinear dynamics considering intrinsic properties. J. Sci. Iran. Trans. B Mech. Eng. 16, 121–129 (2009)

    MATH  Google Scholar 

  47. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 021010 (2009)

    Article  Google Scholar 

  48. Zamanian, M., Khadem, S.E.: Analysis of thermoelastic damping in microresonators by considering the stretching effect. Int. J. Mech. Sci. 52, 1366–1375 (2010)

    Article  Google Scholar 

  49. Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 1711–1717 (2004)

    Article  Google Scholar 

  50. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759–766 (2002)

    Article  Google Scholar 

  51. Nayfeh, A.H., Younis, M.I.: A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J. Micromech. Microeng. 14, 170–181 (2004)

    Article  Google Scholar 

  52. Hagedorn, P., DasGupta, A.: Vibrations and Waves in Continuous Mechanical Systems. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zamanian.

Appendices

Appendix 1

Here the equation of motion and associated boundary conditions for a cantilever beam, shown in the figure below, is derived using the Hamilton principle. It is assumed that the length of the microbeam is \(l+\varepsilon _0 \), and a concentrated force and moment, \(F_\mathrm{s} ,M\) at distance l from the clamped side are applied to it. According to the Hamilton principle [52]:

$$\begin{aligned} \int _{t_1 }^{t_2} {\delta (T-V+W_\mathrm{f} } +W_\mathrm{v}) \hbox {d}t=0, \end{aligned}$$
(54)

where TV, \(W_\mathrm{v}\), and \(W_\mathrm{f} \) are the kinetic energy, potential strain energy, external work due to equivalent viscous damping and external work due to concentrated force and moment, respectively. The variation of these terms are as below (Fig. 20)

$$\begin{aligned} T= & {} \int _0^{l+\varepsilon _0 } {\frac{1}{2}} \rho A\left( \frac{\partial w_1 }{\partial t}\right) ^{2}\hbox {d}x, \nonumber \\ V= & {} \int _0^{l+\varepsilon _0 } {\frac{1}{2}} EI\left( \frac{\partial ^{2}w_1 }{\partial x^{2}}\right) ^{2}\hbox {d}x, \end{aligned}$$
(55)
Fig. 20
figure 20

The microbeam under concentrated force and moment

$$\begin{aligned} \int _{t_1}^{t_2 } {\delta (T})= & {} \delta \int _{t_1 }^{t_2 } \int _0^{l+\varepsilon _0 } {\frac{1}{2}} \rho A\left( \frac{\partial w_1 }{\partial t}\right) ^{2}\hbox {d}x\hbox {d}t \nonumber \\= & {} \int _0^{l+\varepsilon _0} \int _{t_1 }^{t_2 } {\rho A\left( \frac{\partial w_1 }{\partial t}\right) \delta \left( \frac{\partial w_1 }{\partial t}\right) \hbox {d}t\hbox {d}x} \nonumber \\= & {} \underbrace{\int _0^{l+\varepsilon _0 } \rho A\left( \frac{\partial w_1}{\partial t}\right) \delta w_1 \left| {_{t_1 }^{t_2 } } \right. \hbox {d}x}_{=0} \nonumber \\&-\int _0^{l+\varepsilon _0} \int _{t_1 }^{t_2 } {\rho A\left( \frac{\partial ^{2}w_1 }{\partial t^{2}}\right) \delta w_1 \hbox {d}t\hbox {d}x}, \end{aligned}$$
(56)
$$\begin{aligned} \int _{t_1}^{t_2 } {\delta (V} )= & {} \delta \int _{t_1 }^{t_2 } \int _0^{l+\varepsilon _0 } {\frac{1}{2}} EI(\frac{\partial ^{2}w_1 }{\partial x^{2}})^{2}\hbox {d}x\hbox {d}t \nonumber \\= & {} \int _{t_1 }^{t_2 } \int _0^{l+\varepsilon _0 } EI\left( \frac{\partial ^{2}w_1 }{\partial x^{2}}\right) \delta \left( \frac{\partial ^{2}w_1 }{\partial x^{2}}\right) \hbox {d}x\hbox {d}t \nonumber \\= & {} \int _{t_1}^{t_2 } EI\left( \frac{\partial ^{2}w_1 }{\partial x^{2}}\right) \delta \left( \frac{\partial w_1 }{\partial x}\right) \left| {_0^{l+\varepsilon _0 } } \right. \hbox {d}t \nonumber \\&-\int _{t_1 }^{t_2 } \int _0^{l+\varepsilon _0 } EI\left( \frac{\partial ^{3}w_1 }{\partial x^{3}}\right) \delta \left( \frac{\partial w_1 }{\partial x}\right) \hbox {d}x\hbox {d}t \nonumber \\= & {} \int _{t_1 }^{t_2 } EI\left( \frac{\partial ^{2}w_1 }{\partial x^{2}}\right) \delta \left( \frac{\partial w_1 }{\partial x}\right) \left| {_0^{l+\varepsilon _0}} \right. \nonumber \\&- \int _{t_1 }^{t_2 } EI\left( \frac{\partial ^{3}w_1 }{\partial x^{3}}\right) \delta w_1 \left| {_0^{l+\varepsilon _0 } } \right. \nonumber \\&+\int _{t_1}^{t_2 } \int _0^{l+\varepsilon _0 } EI\left( \frac{\partial ^{4}w_1}{\partial x^{4}}\right) \delta (w_1 )\hbox {d}x\hbox {d}t, \end{aligned}$$
(57)
$$\begin{aligned} \int _{t_1 }^{t_2 } {\delta W_\mathrm{f} }= & {} \int _{t_1 }^{t_2 } \left( F_\mathrm{s} \delta w(l,t)-M\delta \frac{\partial w_1 (l,t)}{\partial x}\right) \hbox {d}t, \end{aligned}$$
(58)
$$\begin{aligned} \int _{t_1 }^{t_2 } {\delta W_\mathrm{f} \hbox {d}t}= & {} \int _{t_1 }^{t_2 } \left( F_\mathrm{s} \delta w(l,t)-M\delta \frac{\partial w_1 (l,t)}{\partial x}\right) \hbox {d}t \nonumber \\= & {} \int _{t_1 }^{t_2 } {\int _0^{l+\varepsilon _0 } } F_\mathrm{s} \delta w\hbox { Dirac}(x-l)\hbox {d}x\hbox {d}t \nonumber \\&-\int _{t_1 }^{t_2 } {\int _0^{l+\varepsilon _0 } } M\delta \left( \frac{\partial w}{\partial x}\right) \hbox {Dirac}(x-l)\hbox {d}x\hbox {d}t \nonumber \\= & {} \int _{t_1 }^{t_2 } {\int _0^{l+\varepsilon _0 } } F \delta w\hbox { Dirac}(x-l)\hbox {d}x\hbox {d}t \nonumber \\&-\underbrace{\int _{t_1 }^{t_2 } M\delta w_1 \hbox {Dirac}(x-l)\left| {_0^{l+\varepsilon _0}} \right. }_{=0} \nonumber \\&+\int _{t_1}^{t_2 } {\int _0^{l+\varepsilon _0}} M\frac{\partial \hbox {Dirac}(x-l)}{\partial x} \delta w_1 \hbox {d}x\hbox {d}t, \end{aligned}$$
(59)
$$\begin{aligned} \int _{t_1 }^{t_2 } {\delta (W_\mathrm{v} } )= & {} -\int _{t_1 }^{t_2 } \int _0^{l+\varepsilon _0 } {c\frac{\partial w_1 }{\partial t}\delta w_1 \hbox {d}x} . \end{aligned}$$
(60)

Now, if one substitutes Eqs. (56), (57), (59), and (60) into Eq. (54), the equation of motion for microbeam and associated boundary conditions will be:

$$\begin{aligned} \begin{aligned}&EI\frac{\partial ^{4}w_1 }{\partial x^{4}}+\rho A\frac{\partial ^{2}w_1 }{\partial t^{2}}+c_1 \frac{\partial w_1 }{\partial t}, \\&\quad =F_\mathrm{s}\,\hbox {Dirac}(x-l)+M\frac{\partial \hbox {Dirac}(x-l)}{\partial x}, \\&w_1 \Big | {_{x=0}} =0, \quad \frac{\partial w_1 }{\partial x} \Big | {_{x=0} } =0, \\&\frac{\partial ^{2}w_1 }{\partial x^{2}} \Big | {_{x=l+\varepsilon _0 } } =0,\quad \frac{\partial ^{3}w_1 }{\partial x^{3}} \Big | {_{x=l+\varepsilon _0 } } =0. \end{aligned} \end{aligned}$$
(61)

It is clear that when \(\varepsilon _0 \rightarrow 0\) i.e., one assumes that the external force and moment are at the free boundary, then Eq. (61) results to Eq. (1). It can be considered that if one sets \(\varepsilon _0 =0\), and then substitutes Eq. (58) instead of Eq. (59) into Eq. (54) then the equation of motion for microbeam will be:

$$\begin{aligned} \begin{aligned}&EI\frac{\partial ^{4}w_1 }{\partial x^{4}}+\rho A\frac{\partial ^{2}w_1 }{\partial t^{2}}+c_1 \frac{\partial w_1 }{\partial t}=0 ,\quad 0\le x\le l_1 , \\&w_1 \Big | {_{x=0} } =0, \quad \frac{\partial w_1 }{\partial x}\Big | {_{x=0} } =0 ,\\&-EI\frac{\partial ^{2}w_1 }{\partial x^{2}} \Big | {_{x=l} } =M, \quad -EI\frac{\partial ^{3}w_1 }{\partial x^{3}} \Big | {_{x=l} } =F_\mathrm{s}. \end{aligned} \end{aligned}$$
(62)

Appendix 2

$$\begin{aligned} S_1= & {} \int _0^{\hat{{l}}} \left\{ \frac{\partial ^{4}\varphi _1 }{\partial \hat{{x}}^{4}}-2\alpha _2 V_\mathrm{p} ^{2}\left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{\varphi _2 (\hat{{x}},t)}{(1-w_{\mathrm{s}2} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \right. \\&\times \left. \hbox {Dirac}(\hat{{x}}-\hat{{l}})\right\} \varphi _1 \hbox {d}\hat{{x}}+2\alpha _2 V_\mathrm{p} ^{2} \\&\times \,\int _0^{\hat{{l}}} { \left[ {\int _{l_3 }^{l_4 } {\frac{(\hat{{x}}-l_c )\varphi _2 (\hat{{x}},\hat{{t}})}{(1-w_\mathrm{S2} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}}\varphi _1 }\hbox {d} \hat{{x}}, \\ S_2= & {} -3\alpha _2 V_\mathrm{p} ^{2}\int _0^{\hat{{l}}} \left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{\varphi _2 ^{2}}{(1-w_{\mathrm{s2}} (\hat{{x}}))^{4}}} \hbox {d}\hat{{x}}} \right] \\&\times \,\hbox {Dirac}(\hat{{x}}-\hat{{l}})\varphi _1 \hbox {d}\hat{{x}}+ 3\alpha _2 V_\mathrm{p} ^{2} \\&\times \,\int _0^{\hat{{l}}} \left[ {\int _{l_3 }^{l_4 } {\frac{\left( \hat{{x}}-\hat{{l}}_c\right) \varphi _2 ^{2}}{(1-w_{s2} (\hat{{x}}))^{4}}} \hbox {d}\hat{{x}}} \right] \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}}\varphi _1 \hbox {d}\hat{{x}}, \\ S_5= & {} \int _0^{\hat{{l}}} \varphi _1^2 \hbox {d}\hat{{x}}+\alpha _3 \int _0^{\hat{{l}}} {\varphi _1^2} \hbox {Dirac}\left( \hat{{x}}-\hat{{l}}\right) \hbox {d}x-\alpha _4 \\&\times \,\int _0^{\hat{{l}}} \left( {\frac{\partial \varphi _1 }{\partial \hat{{x}}}\Big | {_{\hat{{x}}=l} } } \right) \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}} \varphi _1 \hbox {d}\hat{{x}}, \\ S_4= & {} \int _0^{\hat{{l}}} {\hat{{c}}_1 } \varphi _{_1 }^2 \hbox {d}\hat{{x}}+\int _0^{\hat{{l}}} {\left( {\int _{_{\hat{{l}}_3 } }^{\hat{{l}}_4 } {\hat{{c}}_2 \varphi _2 \;\hbox {d}\hat{{x}}} } \right) } \\&\times \,\hbox {Dirac}\left( \hat{{x}}-\hat{{l}}\right) \varphi _1 \hbox {d}\hat{{x}} \\&-\,\int _0^{\hat{{l}}} {\left[ {\int _{_{\hat{{l}}_3 } }^{\hat{{l}}_4 } {\hat{{c}}_2 \left( {\hat{{x}}-\hat{{l}}_c } \right) \varphi _2 \;\;\hbox {d}\hat{{x}}} } \right] } \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}}\varphi _1 \hbox {d}\hat{{x}}, \\ S_5= & {} \int _0^{\hat{{l}}} \varphi _1^2 \hbox {d}\hat{{x}}+\alpha _3 \int _0^{\hat{{l}}} {\varphi _1^2 } \hbox {Dirac}(\hat{{x}}-\hat{{l}})\hbox {d}x-\alpha _4 \\&\times \,\int _0^{\hat{{l}}} \left( {\frac{\partial \varphi _1 }{\partial \hat{{x}}}\left| {_{\hat{{x}}=l} } \right. } \right) \frac{\partial \hbox {Dirac}\left( \hat{{x}}-\hat{{l}}\right) }{\partial \hat{{x}}} \varphi _1 \hbox {d}\hat{{x}}, \end{aligned}$$
$$\begin{aligned} S_6= & {} -2\alpha _2 V_\mathrm{p} \int _0^{\hat{{l}}} \left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{1}{(1-w_{\mathrm{s2}} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \\&\times \hbox {Dirac}(\hat{{x}}-\hat{{l}})\varphi _1 \hbox {d}\hat{{x}}+2\alpha _2 V_\mathrm{p} \\&\times \int _0^{\hat{{l}}} \left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{(\hat{{x}}-l_c )}{(1-w_{\mathrm{s2}} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}}\varphi _1 \hbox {d}\hat{{x}}, \\ \quad S_7= & {} -\alpha _2 \int _0^{\hat{{l}}} \left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{1}{(1-w_{\mathrm{s2}} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \\&\times \hbox {Dirac}(\hat{{x}}-\hat{{l}})\varphi _1 \hbox {d}\hat{{x}}+\alpha _2 \int _0^{\hat{{l}}} \left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{(\hat{{x}}-l_c )}{(1-w_{\mathrm{s2}} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \\&\times \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}}\varphi _1 \hbox {d}\hat{{x}}, \\ \quad S_8= & {} -2\alpha _2 V_\mathrm{p} \int _0^{\hat{{l}}} \left[ {\int _{\hat{{l}}_3 }^{\hat{{l}}_4 } {\frac{\varphi _2 }{(1-w_{\mathrm{s2}} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \\&\times \hbox {Dirac}(\hat{{x}}-\hat{{l}})\varphi _1 \hbox {d}\hat{{x}}+2\alpha _2 V_\mathrm{p} \int _0^{\hat{{l}}} \left[ {\int _{l_3 }^{l_4 } {\frac{(\hat{{x}}-l_c )\varphi _2 }{(1-w_{\mathrm{s2}} (\hat{{x}}))^{3}}} \hbox {d}\hat{{x}}} \right] \\&\times \frac{\partial \hbox {Dirac}(\hat{{x}}-\hat{{l}})}{\partial \hat{{x}}}\varphi _1 \hbox {d}\hat{{x}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzi, B., Zamanian, M. & Hosseini, S.A.A. Static and dynamic responses of a microcantilever with a T-shaped tip mass to an electrostatic actuation. Acta Mech. Sin. 32, 1104–1122 (2016). https://doi.org/10.1007/s10409-016-0596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0596-9

Keywords

Navigation