Skip to main content
Log in

Study of the tip mass and interaction force effects on the frequency response and mode shapes of the AFM cantilever

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The vibrational characteristics of an atomic force microscope (AFM) cantilever beam play a key role in dynamic mode of the atomic force microscope. As the oscillating AFM cantilever tip approaches the sample, the tip–sample interaction force influences the cantilever dynamics. In this paper, we present a detailed theoretical analysis of the frequency response and mode shape behavior of a cantilever beam in the dynamic mode subject to changes in the tip mass and the interaction regime between the AFM cantilever system and the sample. We consider a distributed parameter model for AFM and use Euler–Bernoulli method to derive an expression for AFM characteristics equation contains tip mass and interaction force terms. We study the frequency response of AFM cantilever under variations of interaction force between AFM tip and sample. Also, we investigate the effect of tip mass on the frequency response and also the quality factor and spring constant of each eigenmodes of AFM micro-cantilever. In addition, the mode shape analysis of AFM cantilever under variations of tip mass and interaction force is investigated. This will incorporate the presentation of explicit analytical expressions and numerical analysis. The results show that by considering the tip mass, the resonance frequencies of the cantilever are decreased. Also, the tip mass has a significant effect on the mode shape of the higher eigenmodes of the AFM cantilever. Moreover, tip mass affects the quality factor and spring constant of each modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig G, Gerber C, Quate C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  2. Abramovitch YD, Andersson SB, Pao LY, Schitter GA (2007) Tutorial on the mechanisms, dynamics, and control of atomic force microscopes. Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11–13

  3. Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Methods 47:197–301

    Article  MATH  Google Scholar 

  4. Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface coupled atomic force microscope cantilevers: theory and experiment. Rev Sci Inst 67:3281–3293

    Article  Google Scholar 

  5. Hirsekorn S (1998) Transfer of mechanical vibrations from a sample to an AFM-cantilever—a theoretical description. Appl Phys A 66:S249–S254

    Article  Google Scholar 

  6. Dareing DW, Thundat T, Sangmin J, Nicholson M (2005) Modal analysis of microcantilever sensors with environmental damping. J Appl Phys 97:084902

    Article  Google Scholar 

  7. Sahoo DR, Sebastian A, Salapaka MV (2003) Transient-signal-based sample-detection in atomic force microscopy. Appl Phys Lett 83:5521–5523

    Article  Google Scholar 

  8. Jalili N, Laxminarayana K (2004) A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14:907–945

    Article  Google Scholar 

  9. Raman A, Mechler J, Tung R (2008) Cantilever dynamics in atomic force microscopy. Nanotoday 3:20–27

    Article  Google Scholar 

  10. Burnham NA, Behrend OP, Oulevey F, Gremaud G, Gallo PJ, Gourdon D et al (1997) How does a tip tap. Nanotechnology 8(2):67–75

    Article  Google Scholar 

  11. Ashhab M, Salapaka MV, Dahleh M, Mezic I (1999) Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy. Nonlinear Dyn 20:197–220

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang Y, Feemster M, Dawson D, Jalili N (2005) Nonlinear control techniques for an atomic force microscope system. Control Theory Appl J 3:85–92

    Article  MathSciNet  Google Scholar 

  13. Sinha A (2005) Nonlinear dynamics of atomic force microscope with PI feedback. J Sound Vib 288:387–394

    Article  Google Scholar 

  14. Stark RW, Schitter G, Stark M, Guckenberger R (2004) State space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy. Phys Rev B 69(8):085412

    Article  Google Scholar 

  15. Vazquez R, Rubio-Sierra FJ, Stark RW (2006) Transfer function analysis of a surface coupled atomic force microscope cantilever system. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 14–16

  16. Rubio-Sierra FJ, Vázquez R, Stark RW (2006) Transfer function analysis of the micro cantilever used in atomic force microscopy. IEEE Trans Nanotechnol 5(6):692–700

    Article  Google Scholar 

  17. Jalili N, Dadfarnia M, Dawson DM (2004) A fresh insight into the microcantilever–sample interaction problem in non-contact atomic force microscopy. ASME J Dyn Syst Meas Control 126:135

    Article  Google Scholar 

  18. Jalili N, Dadfarnia M, Dawson DM (2003) Distributed-parameters base modeling and vibration analysis of micro-cantilevers used in atomic force microscopy. Proc 19th ASME Biennial Conf Mech Vib Noise, Symp Dyn Vibration Robotic Syst. Chicago, Illinois

  19. Barr EJ (2006) Modelling atomic force micrscopy (using an Euler–Bernoulli beam equation). Department of Engineering Mathematics, University of Bristol

  20. Kuo CF, Su J, Li TL, Zheng L, Chiu CH (2007) Control system design for stability and precise positioning of atomic force microscopy probe. Polym Plast Technol Eng 46(9):849–861

    Article  Google Scholar 

  21. Mahdavi MH, Farshidianfar A, Tahani M, Mahdavi S, Dalir H (2008) A more comprehensive modeling of atomic force microscope cantilever. Ultramicroscopy 109(1):54–60

    Article  Google Scholar 

  22. Chang WJ, Fang TH, Chou HM (2003) Effect of interactive damping on sensitivity of vibration modes of rectangular AFM cantilevers. Phys Lett A 312:158–165

    Article  Google Scholar 

  23. Payam AF, Fathipour M (2009) Modeling and dynamic analysis of atomic force microscope based on Euler–Bernoulli beam theory. Dig J Nanomater Biostruct 4(3):565–578

    Google Scholar 

  24. Meirovitch L (1990) Dynamics and control of structures. Wiley, New York, pp 40–41

    Google Scholar 

  25. Inman D (1994) Engineering vibration. Prentice Hall, Englewood Cliffs

    Google Scholar 

  26. Meirovitch L (1997) Principles and techniques of vibrations. Prentice Hall, Englewood Cliffs

    Google Scholar 

  27. Rao SS (1995) Mechanical vibrations, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  28. Lozano JR, Garcia R (2009) Theory of phase spectroscopy in bimodal atomic force microscopy. Phys Rev B 79:1–9

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Farrokh Payam.

Appendix

Appendix

The solution of Eq. (15) and its time derivatives can be expressed as:

$$ \begin{array}{*{20}{c}} {W(x) = {{C}_{1}}\sin ax + {{C}_{2}}\cos ax + {{C}_{3}}\sinh ax + {{C}_{4}}\cosh ax} \hfill \\ {W\prime (x) = a\left( {{{C}_{1}}\cos ax - {{C}_{2}}\sin ax + {{C}_{3}}\cosh ax + {{C}_{4}}\sinh ax} \right)} \hfill \\ {W\prime \prime (x) = {{a}^{2}}\left( { - {{C}_{1}}\sin ax - {{C}_{2}}\cos ax + {{C}_{3}}\sinh ax + {{C}_{4}}\cosh ax} \right)} \hfill \\ {W\prime \prime \prime (x) = {{a}^{3}}\left( { - {{C}_{1}}\cos ax + {{C}_{2}}\sin ax + {{C}_{3}}\cosh ax + {{C}_{4}}\sinh ax} \right)} \hfill \\ \end{array} $$
(27)

From boundary conditions, we have:

$$ W(0) = 0 \Rightarrow {C_4} = - {C_2} $$
(28)
$$ W\prime (0) = 0 \Rightarrow {C_3} = - {C_1} $$
(29)
$$ W\prime \prime (L) = 0 \Rightarrow \left[ {\sin aL + \sinh aL} \right]{C_1} + \left[ {\cos aL + \cosh aL} \right]{C_2} = 0 $$
(30)

And finally:

$$ \begin{array}{*{20}{c}} { - {{m}_{{\text{e}}}}\omega _{n}^{2}\left( {D + \left[ {\sin aL - \sinh aL} \right]{{C}_{1}} + \left[ {\cos aL - \cosh aL} \right]{{C}_{2}}} \right)} \hfill \\ { - {{a}^{3}}{\text{EI}}\left( { - \left[ {\cos aL + \cosh aL} \right]{{C}_{1}} + \left[ {\sin aL - \sinh aL} \right]{{C}_{2}}} \right)} \hfill \\ { + {{k}_{{{\text{ts}}}}}\left( {\left[ {\sin aL - \sinh aL} \right]{{C}_{1}} + \left[ {\cos aL - \cosh aL} \right]{{C}_{2}}} \right) = 0} \hfill \\ \end{array} $$
(31)

by defining \( {B_1},\;{B_2},\;{B_3}, \) and \( {B_4} \) as:

$$ \begin{array}{*{20}{c}} {{{B}_{1}} = \sin aL + \sinh aL} \\ {{{B}_{2}} = \cos aL + \cosh aL} \\ {{{B}_{3}} = \left[ {\sin aL - \sinh aL} \right]\left[ {{{k}_{{{\text{ts}}}}} - {{m}_{{\text{e}}}}\omega _{n}^{2}} \right] + {{a}^{3}}{\text{EI}}\left[ {\cos aL + \cosh aL} \right]} \\ {{{B}_{4}} = \left[ {\cos aL - \cosh aL} \right]\left[ {{{k}_{{{\text{ts}}}}} - {{m}_{{\text{e}}}}\omega _{n}^{2}} \right] - {{a}^{3}}{\text{EI}}\left[ {\sin aL - \sinh aL} \right]} \\ \end{array} $$
(32)

Substituting Eq. (32) in (28, 29, 30, and 31) gives:

$$ {\left[ {\begin{array}{*{20}c} {{C_{1} }} \\ {{C_{2} }} \\ \end{array} } \right]} = {\left[ {\begin{array}{*{20}c} {{B_{1} }} {{B_{2} }} \\ {{B_{3} }} {{B_{4} }} \\ \end{array} } \right]}^{{ - 1}} {\left[ {\begin{array}{*{20}c} {0} \\ {E} \\ \end{array} } \right]} $$
(33)

Where:

$$ E = \frac{{{m_{\rm{e}}}{a^4}{\text{EI}}}}{\rho }D $$
(34)

And the characteristics equation is expressed by:

$$ {B_2}{B_3} - {B_1}{B_4} = 0 $$
(35)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrokh Payam, A., Fathipour, M. Study of the tip mass and interaction force effects on the frequency response and mode shapes of the AFM cantilever. Int J Adv Manuf Technol 65, 957–966 (2013). https://doi.org/10.1007/s00170-012-4231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4231-z

Keywords

Navigation