Skip to main content
Log in

Nonlinear dynamic response of beam and its application in nanomechanical resonator

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvature-dominant nonlinearities are analyzed. The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach. The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity, its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects. However, for the nanomechanical resonator of the curvature-dominant nonlinearity, its dynamic nonlinearity is only dependent on axial loading. Compared with the tension-dominant nonlinearity, the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects. The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cleland, A.N., Roukes, M.L.: Fabrication of high frequency nanometer scale resonators from bulk Si crystals. Appl. Phys. Lett. 69(18), 2653–2655 (1996)

    Article  Google Scholar 

  2. Cleland, A.N., Roukes, M.L.: A nanometre-scale mechanical electrometer. Nature 392(6672), 160–162 (1998)

    Article  Google Scholar 

  3. Turner, K.L., Miller, S.A., Hartwell, P.G., et al.: Five parametric resonances in a microelectromechanical system. Nature 396(6707), 149–152 (1998)

    Article  Google Scholar 

  4. Sazonova, V., Yalsh, Y., Üstünel, H., et al.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7016), 284–287 (2004

    Article  Google Scholar 

  5. Badzey, R.L., Zolfagharkhani, G., Gaidarzhy, A., et al.: A controllable nanomechanical memory element. Appl. Phys. Lett. 85(16), 3587–3589 (2004)

    Article  Google Scholar 

  6. Badzey, R.L., Zolfagharkhani, G., Gaidarzhy, A., et al.: Temperature dependence of a nanomechanical switch. Appl. Phys. Lett. 86(2), 023106 (2005)

    Article  Google Scholar 

  7. Dohn, S., Sandberg, R., Svendsen, W., et al.: Enhanced functionality of cantilever based mass sensors using higher modes. Appl. Phys. Lett. 86(23), 233501 (2005)

    Article  Google Scholar 

  8. Erbe, A., Krömmer, H., Kraus, A., et al.: Mechanical mixing in nonlinear nanomechanical resonators. Appl. Phys. Lett. 77(19), 3102–3104 (2000)

    Article  Google Scholar 

  9. Huang, X.M.H., Zorman, C.A., Mehregany, M., et al.: Nanodevice motion at microwave frequency. Nature 421(6931), 496 (2003)

    Article  Google Scholar 

  10. Postma, H.W.Ch., Kozinsky, I., Husain, A., et al.: Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86(22), 223105 (2005)

    Article  Google Scholar 

  11. Gaidarzhy, A., Zolfagharkhani, G., Badzey, R.L., et al.: Evidence for quantized displacement in macroscopic nanomechanical oscillators. Phys. Rev. Lett. 94(3), 030402 (2005)

    Article  Google Scholar 

  12. Ekinci, K.L., Huang, X.M.H., Roukes, M.L.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84(22), 4469–4471 (2004)

    Article  Google Scholar 

  13. Evoy, S., Carr, D.W., Sekaric, L., et al.: Nanofabrcaition and electrostatic operation of single-crystal silicon paddle oscillators. J.Appl. Phys. 86(11), 6072–6077 (1999)

    Article  Google Scholar 

  14. Papadakis, S.J., Hall, A.R., Williams, P.A., et al.: Resonant oscillators with carbon-nanotude tosion springs. Phys. Rev. Lett. 93(14), 146101 (2004)

    Article  Google Scholar 

  15. Craighead, H.G.: Nanomechanical systems. Science 290(5496), 1532–1535 (2000)

    Article  Google Scholar 

  16. Kozinsky, I., Postma, H.W.Ch., Bargatin, I., et al.: Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Appl. Phys. Lett. 88(25), 253101 (2006)

    Article  Google Scholar 

  17. Ekinci, K.L., Roukes, M.L.: Nannomechanical systems. Rev. Sci. Instrum. 76(6), 061101 (2005)

    Article  Google Scholar 

  18. Verbridge, S.S., Parpia, J.M., Reichenbach, R.B., et al.: High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99(12), 124304 (2006)

    Article  Google Scholar 

  19. Roukes, M.L.: Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (2001)

    Google Scholar 

  20. Cho, A.: Researchers race to put the quantum into mechanics. Science 299(5603), 36–37 (2003)

    Article  Google Scholar 

  21. Mohanty, P., Harrington, D.A., Ekinci, K.L., et al.: Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66(8), 085416 (2002)

    Article  Google Scholar 

  22. Knobel, R., Cleland, N.A.: Nanometre-scale displacement sensing using a single electron transistor. Nature 424(6946), 291–293 (2003)

    Article  Google Scholar 

  23. Peano, V., Thorwart, M.: Macroscopic quantum effects in a strongly driven nanomechanical resonator. Phys. Rev. B 70(23), 235401 (2004)

    Article  Google Scholar 

  24. Dykman, M.I., Fistul, M.V.: Multiphoton antiresonance. Phys. Rev. B 71(14), 140508 (R) (2005)

    Article  Google Scholar 

  25. Krömmer, H., Erbe, A., Tilke, A., et al.: Nanomechanical resonators operating as charge detectors in the nonlinear regime. Europhys. Lett. 50(1), 101–106 (2000)

    Article  Google Scholar 

  26. Greywall, D.S., Yurke, B., Busch, P.A., et al.: Evading amplifier noise in nonlinear oscillation. Phys. Rev. Lett. 72(19), 2992–2995 (1994)

    Article  Google Scholar 

  27. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation, John Wiley & Sons, Inc., New York, 1979

    Google Scholar 

  28. Anderson, T.J., Nayfeh, A.H., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. of Vibr. Acoust. 118(1), 21–27 (1996)

    Article  Google Scholar 

  29. Cleland, A.N.: Carbon nanotubes tune up. Nature 431(7006), 251 (2004)

    Article  Google Scholar 

  30. Lifshitz, R., Cross, M.T.: Nonlinear dynamics of nanomechanical and micromechanical resonators. In: Schuster, H.G. ed. Reviews of Nonlinear Dynamics and Complexity, Wiley-VcH Verlag GmbH & Co. KGaA, Weinbeim, Germany, 2009

    Google Scholar 

  31. Zhang, Y., Zhao, Y.P.: Numerical and analytical study on the pull-in instability of micro-structure under electrostatic loading. Sensors and Actuators A 127(2) 366–380 (2006)

    Article  Google Scholar 

  32. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a beam under harmonic excitation. J. Appl. Mech., 37(2), 292–297 (1970)

    Article  MATH  Google Scholar 

  33. Guo, J.G., Zhao, Y.P.: The size-dependent bending elastic properties of nanobeams with surface effects. Nanotechnology, 18, 295701 (2007)

    Article  Google Scholar 

  34. Ji, B., Chen, W., Zhao, J.: Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity. Acta. Mech. Sin., 25(3), 381–387 (2009)

    Article  Google Scholar 

  35. Hasheminejad, S.M., Gheshlaghi, B.: Dissipative surface effects on free vibrations of nanowires. Appl. Phys. Lett. 97(25), 253103 (2010)

    Article  Google Scholar 

  36. Zhang, Y.: Deflections and curvatures of a film-substrate with the presence of gradient stress in MEMS applications. J. Micomech. Micoeng. 17, 753–762 (2007)

    Article  Google Scholar 

  37. Zhang, Y., Zhao, Y.P.: Applicability range of Stoney’s formula and modified formulas for a film/substrate bilayer. J. Appl. Phys. 99(5), 053513 (2006)

    Article  Google Scholar 

  38. Zhang, Y., Ren, Q., Zhao, Y.P.: Modelling analysis of surface stress on a rectangular cantilever beam. J. Phys. D: Appl. Phys. 37, 2140–2145 (2004)

    Article  Google Scholar 

  39. McDonald Jr., P.H., Raleigh, N.C.: Nonlinear dynamic coupling in a beam vibration. J. Appl. Mech. 22(4), 573–578 (1955)

    MATH  Google Scholar 

  40. Herrmann, G.: Forced motions of Timoshenko beams. J. Appl. Mech. 22(1), 53–56 (1955)

    MATH  Google Scholar 

  41. Narasimha, R.: Non-linear vibration of an elastic string. J. Sound Vib. 8(1), 134–146 (1968)

    Article  MATH  Google Scholar 

  42. Bayly, P.V., Murphy, K.D.: Coupling between dissimilar modes in an asymmetrically forced string. J. Acoust. Soc. Am. 103(6), 3362–3369 (1998)

    Article  Google Scholar 

  43. Evensen, H.A., Evan-Iwanowski, R.M.: Effects of longitudinal inertia upon the parametric response of elastic column. J. Appl. Mech. 33(1), 141–148 (1966)

    Article  Google Scholar 

  44. McIvor, I.K., Bernard, J.E.: The dynamic response of columns under short duration axial loads. J. Appl. Mech. 40(3), 688–692 (1973)

    Article  Google Scholar 

  45. Thurman, A.L., Mote, C.D.: Free, periodic, nonlinear oscillation of an axially moving strip. J. Appl. Mech. 36(1), 83–91 (1969)

    Article  MATH  Google Scholar 

  46. Pugno, N., Surface, C., Ruotolo, R.: Evaluation of the nonlinear dynamic response to harmonic excitation of a beam with several breathing cracks. J. Sound Vib. 235(5), 749–762 (2000)

    Article  Google Scholar 

  47. Murphy, K.D., Zhang, Y.: Vibration and stability of a cracked translating beam. J. Sound Vib. 237(2), 319–335 (2000)

    Article  Google Scholar 

  48. Ke, C.H., Pugno, N., Peng, B., et al.: Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids 53(6), 1314–1333 (2005)

    Article  MATH  Google Scholar 

  49. Feng, Z., Hu, H.: Principal parametric and three-to-one internal resonances of flexible beams undergoing a large linear motion. Acta Mech. Sin., 19(4), 355–364 (2003)

    Article  Google Scholar 

  50. Chang, T.C., Craig Jr., R.R.: Normal modes of uniform beams. J. Eng. Mech. Div. ASCE 95(EM4), 1027–1031 (1969)

    Google Scholar 

  51. Chajes, A.: Principles of Structural Stability Theory. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974

    Google Scholar 

  52. Thompson, J.M.T., Hunt, G.W.: Elastic Instability Phenomena. Jonh Wiley & Sons, Inc. New York, 1984

    MATH  Google Scholar 

  53. Moon, F.C.: Chaotic and Fractal Dynamics: An Introduction to Applied Scientists and Engineers. Jonh Wiley & Sons, Inc., New York, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhang.

Additional information

The project was supported by the National Natural Science Foundation of China (10721202 and 11023001) and the Chinese Academy of Sciences (KJCX2-EW-L03).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, Y. & Murphy, K.D. Nonlinear dynamic response of beam and its application in nanomechanical resonator. Acta Mech Sin 28, 190–200 (2012). https://doi.org/10.1007/s10409-011-0501-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-011-0501-5

Keywords

Navigation