Skip to main content
Log in

Analytical modeling of static behavior of electrostatically actuated nano/micromirrors considering van der Waals forces

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the effect of van der Waals (vdW) force on the pull-in behavior of electrostatically actuated nano/micromirrors is investigated. First, the minimum potential energy principle is utilized to find the equation governing the static behavior of nano/micromirror under electrostatic and vdW forces. Then, the stability of static equilibrium points is analyzed using the energy method. It is found that when there exist two equilibrium points, the smaller one is stable and the larger one is unstable. The effects of different design parameters on the mirror’s pull-in angle and pull-in voltage are studied and it is found that vdW force can considerably reduce the stability limit of the mirror. At the end, the nonlinear equilibrium equation is solved numerically and analytically using homotopy perturbation method (HPM). It is observed that a sixth order perturbation approximation can precisely model the mirror’s behavior. The results of this paper can be used for stable operation design and safe fabrication of torsional nano/micro actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maluf, N., Williams, K.: An Introduction to Microelectromechanical Systems Engineering. (2nd edn), Microelectromechanical Systems (MEMS) Series, Boston, London, Artech House Inc, (1999)

    Google Scholar 

  2. Younis, M.I.: Modeling and simulation of microelectromechanical systems in multi-physics fields. [Ph.D. Thesis], Virginia Polytechnic Institute and State University, 1–8, USA (2004)

  3. Chao, P. C. P, Chiu, C. W., Tsai, C. Y.: A novel method to predict the pull-in voltage in a closed form for microplates actuated by a distributed electrostatic force. J. Micromech. Microeng. 16, 986–998 (2006)

    Article  Google Scholar 

  4. Hornbeck, L. J.: Spatial light modulator and method. US Patent 5061049 (1991)

  5. Ford, J. E., Aksyuk, V. A., Bishop, D. J., et al.: Wavelenghth add-drop swiching using tilting micromirrors. J. Lightwave technol. 17, 904–911 (1999)

    Article  Google Scholar 

  6. Dickensheets, D. L., Kino G. S.: Silicon-micromachined scanning confocal optical microscope. Journal of Microelectromechanical Systems 7, 38–47 (1998)

    Article  Google Scholar 

  7. Zavracky, P. M., Majumber, S., McGruer, E.: Micromechanical switches fabricated using nickel surface micromachining. J. Microelectromech. Syst. 6, 3–9 (1997)

    Article  Google Scholar 

  8. Toshiyoshi, H., Fujita, H.: Electrostatic micro torsion mirrors for an optical switch matrix. J. Microelectromech. Syst. 5, 231–237 (1996)

    Article  Google Scholar 

  9. Huang, J. M., Liu, A. Q., Deng, Z. L., et al.: An approach to the coupling effect between torsion and bending for electrostatic torsional micromirrors. Sensors and Actuators, A: Physical 115, 159–167 (2004)

    Article  Google Scholar 

  10. Degani, O. B., Elata, D., Nemirovsky, Y.: An efficient DIPIE algorithm for CAD of electrostatically actuated MEMS devices. Journal of Microelectromechanical Systems 11, 612–620 (2002)

    Article  Google Scholar 

  11. Zhang, X. M., Chau, F. S., Quan, C., et al.: A study of the static characteristics of a torsional micromirror. Sensors and Actuators A: Physical 90, 73–81 (2001)

    Article  Google Scholar 

  12. Khatami, F., Rezazadeh, G.: Dynamic response of a torsional micromirror to electrostatic force and mechanical shock. Microsyst. Technol. 15, 535–545 (2009)

    Article  Google Scholar 

  13. Bhaskar, A. K., Packirisamy, M., Bhat, R. B.: Modeling switching response of torsional micromirrors for optical microsystems. Mechanism and Machine Theory 39, 1399–1410 (2004)

    Article  MATH  Google Scholar 

  14. Liu, H., Gao, S., Niu, S., et al.: Analysis on the adhesion of microcomb structure in MEMS. International Journal of Applied Electromagnetics and Mechanics 33, 979–984 (2010)

    Google Scholar 

  15. Xie, G., Ding, J., Liu, S., et al.: Interfacial properties for real rough MEMS/NEMS surfaces by incorporating the electrostatic and Casimir effects-a theoretical study. Surf. Interface Anal. 41, 338–346 (2009)

    Article  Google Scholar 

  16. Gusso, A., Delben, G. J.: Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators. Sensors and Actuators A 135, 792–800 (2007)

    Article  Google Scholar 

  17. Tahami, F. V., Mobki, H., Janbahan, A. A. K., et al.: Pull-in phenomena and dynamic response of a capacitive nano-beam switch. Sensors & Transducers Journal 110, 26–37 (2009)

    Google Scholar 

  18. Batra, R. C., Porfiri, M., Spinello, D.: Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors 8, 1048–1069 (2008)

    Article  Google Scholar 

  19. Mojahedi, M., Moeenfard, H., Ahmadian, M. T.: A new efficient approach for modeling and simulation of nanoswitches under combined effects of intermolecular surface forces and electrostatic actuation. International Journal of Applied Mechanics 1, 349–365 (2009)

    Article  Google Scholar 

  20. Ramezani, A., Alasty, A., Akbari, J.: Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces. International Journal of Solids and Structures 44, 4925–4941 (2007)

    Article  MATH  Google Scholar 

  21. Guo, J. G., Zhao, Y. P.: Dynamic stability of electrostatic torsional actuators with van der Waals effect. International Journal of Solids and Structures 43, 675–685 (2006)

    Article  MATH  Google Scholar 

  22. Guo, J. G., Zhao, Y. P.: Influence of van der Waals and casimir forces on electrostatic torsional actuators. J. Microelectromechanical Sys. 13, 1027–1035 (2004)

    Article  Google Scholar 

  23. Younis, M. I., Nayfeh, A. H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dynamics 31, 91–117 (2003)

    Article  MATH  Google Scholar 

  24. Abdel-Rahman, E. M., Nayfeh, A. H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromechanics and Microengineering 13, 491–501 (2003)

    Article  Google Scholar 

  25. He, J. H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mechanics 35, 37–43 (2000)

    Article  MATH  Google Scholar 

  26. Moeenfard, H., Mojahedi, M., Ahmadian, M. T.: A homotopy perturbation analysis of nonlinear free vibration of timoshenko microbeams. Journal of mechanical science and technolegy 25, 279–285 (2011)

    Article  Google Scholar 

  27. Mojahedi, M., Moeenfard, H., Ahmadian, M. T.: Analytical solutions for the static instability of nano-switches under the effect of casimir force and electrostatic actuation. ASME International Mechanical Engineering Congress and Exposition, Proceedings, 63–69 (2010)

  28. Degani, O. B., Socher, E., Lipson, A., et al.: Pull-In Study of an Electrostatic Torsion Microactuator. J. Microelectromechanical Sys. 7, 373–379 (1998)

    Article  Google Scholar 

  29. Rao, S. S.: Vibration of Continuous Systems. John Wiley & Sons, New Jersey (2007)

    Google Scholar 

  30. Gambhir, M. L.: Stability Analysis and Design of Structures. Springer, Berlin (2004)

    Book  Google Scholar 

  31. Nemirovsky, Y., Degani, O. B.: A Methodology and Model for the Pull-In Parameters of Electrostatic Actuators. J. Microelectromechanical Sys. 10, 601–615 (2001)

    Article  Google Scholar 

  32. Lin, W. H., Zhao, Y. P.: Influence of damping on the dynamical behavior of the electrostatic parallel-plate and torsional actuators with intermolecular forces. Sensors 7, 3012–3026 (2007)

    Article  Google Scholar 

  33. Lin, W. H., Zhao, Y. P.: Pull-in instability of micro-switch actuators: Model review. International Journal of Nonlinear Sciences and Numerical Simulation 9, 175–183 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taghi Ahmadian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeenfard, H., Ahmadian, M.T. Analytical modeling of static behavior of electrostatically actuated nano/micromirrors considering van der Waals forces. Acta Mech Sin 28, 729–736 (2012). https://doi.org/10.1007/s10409-012-0105-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-012-0105-8

Keywords

Navigation