Skip to main content

Design and Development of a Piezoelectrically Actuated Micropump for Drug Delivery Application

  • Chapter
  • First Online:
Micro and Smart Devices and Systems

Abstract

Micropumps form the heart of several microfluidic systems like micro total analysis system (µTAS) and drug delivery devices, which have resulted from the advancement of silicon micromachining technology. Among the different available types of micropumps, valveless micropumps are better suited for biological applications as they do not have flow-rectifying valves and are less prone to clogging and wear. However, their main drawback is low thermodynamic efficiency. This can be improved if we have a better understanding of the effects of geometry on the performance. This forms one of the objectives of this work. This chapter describes the activity on the design and development of valveless micropumps. A numerical parametric study of the performance of valveless micropumps has been carried out and is presented to bring out the effects of different geometrical parameters. Based on these design approaches, silicon-based micropumps are fabricated and characterized. The performance of one of these micropumps is compared with designed value in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  2. Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sens Actuators A 21(1–3):203–206

    Article  Google Scholar 

  3. Garimella SV, Singhal V (2004) Single-phase flow and heat transport and pumping considerations in microchannel heat sinks. Heat Trans Eng 25(1):15–25

    Article  Google Scholar 

  4. Verma P, Chatterjee D, Nagarajan T (2008) Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling. Proc. IMechE. Part C J Mech Eng Sci 223:953–963

    Article  Google Scholar 

  5. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical-analysis systems—a novel concept for chemical sensing. Sens Actuators B 1:244–248

    Article  Google Scholar 

  6. Lee SJ, Lee SY (2006) Micro total analysis system (μ-TAS) in biotechnology. Appl Microbiol Biotechnol 64:289–299

    Article  Google Scholar 

  7. Brand S (2006) Microdosing systems: micro-pumps the beating heart of micro-fluidics. http://www.mstonline.de/news/events/micropumps

  8. Thomas LJ Jr, Bessman SP (1975) Micro pump powered by piezoelectric disk benders. US3963380, USA

    Google Scholar 

  9. Smits JG (1984) Piezo-electrical micropump. European patent EP0134614, Netherlands

    Google Scholar 

  10. van Lintel HTG, van De Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sens Actuators 15(2):153–167

    Article  Google Scholar 

  11. Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pumps. Sens Actuators A Phys 39:159–167

    Article  Google Scholar 

  12. Gerlach T, Wurmus H (1995) Working principle and performance of the dynamic micropump. Sens Actuators A Phys 50:135–140

    Article  Google Scholar 

  13. Schabmueller C, Koch M, Mokhtari M, Evans A, Brunnschweiler A, Sehr H (2002) Self-aligning gas/liquid micropump. J Micromech Microeng 12:420–424

    Article  Google Scholar 

  14. Olsson A, Enoksson P, Stemme G, Stemme E (1997) Micromachined flatwalled valveless diffuser pumps. J Microelectromechanical Syst 6(2):161–166

    Article  Google Scholar 

  15. Nguyen NT, Huang XY (2001) Miniature valveless pumps based on printed circuit technique. Sens Actuators A 88:104–111

    Article  Google Scholar 

  16. Yamahata C, Lotto C, Al-Assaf E, Gijs MAM (2005) A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid 1:197–207

    Article  Google Scholar 

  17. Kim Y-S, Kim J-H, Na K-H, Rhee K (2005) Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump. Proc IMechE Part C J Mech Eng Sci 219:1139–1145

    Article  Google Scholar 

  18. Pan LS, Ng TY, Wu XH, Lee HP (2003) Analysis of valveless micropumps with inertial effects. J Micromech and Microeng 13:390–399

    Article  Google Scholar 

  19. Pan LS, Ng TY, Liu GR, Lam KY, Jiang TY (2001) Analytical solution for the dynamic analysis of a valveless micropump: a fluid-membrane coupling study. Sens Actuators A 93:173–181

    Article  Google Scholar 

  20. Ullmann A (1998) The piezoelectric valve-less pump-performance enhancement analysis. Sens Actuators A 69:97–105

    Article  Google Scholar 

  21. Ullmann A, Fono I (2002) The piezoelectric valve-less pump improved dynamic model. J Microelectromech Syst 11:655–664

    Article  Google Scholar 

  22. Forster F, Bardell R, Afromowitz M, Sharma N (1995) Design, fabrication and testing of fixed-valve micropumps. Proc ASME Fluids Eng Div IMECE 234:39–44

    Google Scholar 

  23. Bardell LR, Nigel RS, Fred KF, Martin AA, Robert JP (1997) Designing high-performance micro-pumps based on no-moving-parts valves. Microelectromech Syst ASME 354:47–53

    Google Scholar 

  24. Verma P, Chatterjee D (2011) Parametric characterization of piezoelectric valveless micropump. Microsyst Technol 17:1727–1737

    Article  Google Scholar 

  25. Fan B, Song G, Hussain F (2005) Simulation of a piezoelectrically actuated valveless micropump. Smart Mater Struct 14:400–405

    Article  Google Scholar 

  26. Ha DH, Van PP, Goo NS, Han CH (2009) Three-dimensional electro-fluid-structural interaction simulation for pumping performance evaluation of a valveless micropump. Smart Mater Struct 18:104015

    Article  Google Scholar 

  27. Nisar A, Nitin A, Banchong M, Adisorn T (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942

    Article  Google Scholar 

  28. Yao Q, Xu D, Pan LS, Melissa Teo AL, Ho WM, Peter Lee VS, Shabbir M (2007) CFD simulations of flows in valveless micropumps. Eng App Comp Fluid Mech 1(3):181–188

    Google Scholar 

  29. Kim Y-S, Kim J-H, Na K-H, Rhee K (2005) Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump. Proc IMechE Part C J Mech Eng Sci 219:1139–1145

    Article  Google Scholar 

  30. Dinh TX, Ogami Y (2011) A dynamic model of valveless micropumps with a fluid damping effect. J Micromech and Microeng 21:115016

    Article  Google Scholar 

  31. Azarbadegan A, Eames I, Sharma S, Cass A (2011) Computational study of parallel valveless micropumps. Sens Actuators B 158:432–440

    Article  Google Scholar 

  32. Nguyen NT, Huang X (2000) Numerical simulation of pulse-width-modulated micropumps with diffuser/nozzle elements. In: Proceedings of the international conference on modeling of simulator microsystems MSM2000, Santiago, CA pp 636–639

    Google Scholar 

  33. Tsui YY, Lu SL (2008) Evaluation of the performance of a valveless micropump by CFD and lumped system analyses. Sens Actuators A 148:138–148

    Article  Google Scholar 

  34. Lu L, Wu J (2008) Flow behavior of liquid-solid coupled system of piezoelectric micropump. Frontiers Mech Eng China 3(1):50–54

    Article  Google Scholar 

  35. Jeong J, Kim CN (2007) A numerical simulation on diffuser-nozzle based piezoelectric micropumps with two different numerical models. Int J Num Methods Fluids 53:561–571

    Article  MATH  Google Scholar 

  36. Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using lumped-mass mode. J Micromech Microeng 9:34–44

    Article  Google Scholar 

  37. Paul BE, Chatterjee D, DasGupta A (2012) An efficient numerical method for predicting the performance of valveless micropump. Smart Mater Struct 21:115012

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. K. N. Bhat for initiating this activity and his guidance. They would also like to thank NPSM for the project on “Design and fabrication of silicon micropump for drug delivery and drug dosage control (Project No. 5:7)” and NPMASS for the project on “Upgrading facilities for MEMS design activities at National Resource Centres”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava DasGupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Eladi, P.B., Chatterjee, D., DasGupta, A. (2014). Design and Development of a Piezoelectrically Actuated Micropump for Drug Delivery Application. In: Vinoy, K., Ananthasuresh, G., Pratap, R., Krupanidhi, S. (eds) Micro and Smart Devices and Systems. Springer Tracts in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1913-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1913-2_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1912-5

  • Online ISBN: 978-81-322-1913-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics