Skip to main content
Log in

A PMMA valveless micropump using electromagnetic actuation

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We have fabricated and characterized a polymethylmethacrylate (PMMA) valveless micropump. The pump consists of two diffuser elements and a polydimethylsiloxane (PDMS) membrane with an integrated composite magnet made of NdFeB magnetic powder. A large-stroke membrane deflection (~200 μm) is obtained using external actuation by an electromagnet. We present a detailed analysis of the magnetic actuation force and the flow rate of the micropump. Water is pumped at flow rates of up to 400 µl/min and backpressures of up to 12 mbar. We study the frequency-dependent flow rate and determine a resonance frequency of 12 and 200 Hz for pumping of water and air, respectively. Our experiments show that the models for valveless micropumps of A. Olsson et al. (J Micromech Microeng 9:34, 1999) and L.S. Pan et al. (J Micromech Microeng 13:390, 2003) correctly predict the resonance frequency, although additional modeling of losses is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 a
Fig. 8
Fig. 9 a
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Accoto D, Carrozza MC, Dario P (2000) Modelling of micropumps using unimorph piezoelectric actuator and ball valves. J Micromech Microeng 10:277–281

    Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Google Scholar 

  • Blevins RD (1984) Applied fluid dynamics handbook. Van Nostrand-Reinhold, New York

  • Böhm S, Olthuis W, Bergveld P (1999) A plastic micropump constructed with conventional techniques and materials. Sens Actuators A, Phys 77:223–228

    Google Scholar 

  • Cho HJ, Ahn CH (2003) Microscale resin-bonded permanent magnets for magnetic micro-electro-mechanical systems applications. J Appl Phys 93:8674–8676

    Google Scholar 

  • Cockrell DJ, Markland E (1963) A review of incompressible diffuser flow. Aircraft Eng 35:286–292

    Google Scholar 

  • Forster F, Bardell R, Afromowitz M, Sharma N (1995) Design, fabrication and testing of fixed-valve micropumps. In: Proceedings of the ASME Fluids Engineering Division, International Mechanical Engineering Congress and Exposition, San Francisco, USA, pp 39–44

  • Gerlach T (1998) Microdiffusers as dynamic passive valves for micropump applications. Sens Actuators A, Phys 69:181–191

    Google Scholar 

  • Gerlach T, Schuenemann M, Wurmus H (1995) A new micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves. J Micromech Microeng 5:199–201

    Google Scholar 

  • Gibson AH (1945) Hydraulics and its applications. Constable, London, p 93

  • Greivell N, Hannaford B (1997) The design of a ferrofluid magnetic pipette. IEEE Trans Biomed Eng 44:129–135

    Google Scholar 

  • Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromech Syst 10:215–221

    Google Scholar 

  • Khoo M, Liu C (2000) A novel micromachined magnetic membrane microfluid pump. In: International Conference of the IEEE Engineering in Medicine and Biology Society (EMB), Chicago, IL

  • Lagorce LK, Brand O, Allen MG (1999) Magnetic microactuators based on polymer magnets. J Microelectromech Syst 8:2–9

    Google Scholar 

  • Liu C (1998) Development of surface micromachined magnetic actuators using electroplated permalloy. J Mechatronics 613–633

  • Manz A, Fettinger JC, Verpoorte E, Ludi H, Widmer HM, Harrison DJ (1991) Micromachining of monocrystalline silicon and glass for chemical analysis systems—a look into next century’s technology or just a fashionable craze? Trends Anal Chem 10:144–149

    Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B, Chem 1:244–248

    Google Scholar 

  • Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334

    Google Scholar 

  • Naudascher E, Rockwell D (1994) Flow-induced vibrations: an engineering guide. Balkema, Brookfield, USA

  • Nguyen N-T, Huang X (2001) Miniature valveless pumps based on printed circuit board technique. Sens Actuators A, Phys 88:104–111

    Google Scholar 

  • Nguyen N-T, Huang XY, Chuan TK (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392

    Google Scholar 

  • Nguyen N-T, Truong T-Q (2004) A fully polymeric micropump with piezoelectric actuator. Sens Actuators B, Chem 97:139–145

    Google Scholar 

  • Olsson A (1998) Valve-less diffuser micropumps. PhD thesis, Royal Institute of Technology, Stockholm, Sweden

  • Olsson A, Enoksson P, Stemme G, Stemme E (1995) A valve-less planar pump in silicon. In: Proceeding of the 8th IEEE International Conference on Transducers, Stockholm, Sweden, vol 2, pp 291–294

  • Olsson A, Larsson O, Holm J, Lundbladh L, Ohman O, Stemme G (1998) Valve-less diffuser micropumps fabricated using thermoplastic replication. Sens Actuators A, Phys, 64:63–68

    Google Scholar 

  • Olsson A, Stemme G, Stemme E (1996) Diffuser-element design investigation for valve-less pumps. Sens Actuators A, Phys 57:137–143

    Google Scholar 

  • Olsson A, Stemme G, Stemme E (1999) A numerical design study of the valveless diffuser pump using a lumped-mass model. J Micromech Microeng 9:34–44

    Google Scholar 

  • Pan LS, Ng TY, Wu XH, Lee HP (2003) Analysis of valveless micropumps with inertial effects. J Micromech Microeng 13:390–399

    Google Scholar 

  • Patterson GN (1938) Modern diffuser design. Aircraft Eng 10:267

    Google Scholar 

  • Richter M, Linnemann R, Woias P (1998) Robust design of gas and liquid micropumps. Sens Actuators A, Phys 68:480–486

    Google Scholar 

  • Santra S, Holloway P, Batich CD (2002) Fabrication and testing of a magnetically actuated micropump. Sens Actuators B, Chem 87:358–364

    Google Scholar 

  • Singhal V, Garimella SV, Murthy JY (2004) Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sens Actuators (in press)

  • Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A, Phys 39:159–167

    Google Scholar 

  • Tay FEH, Choong WO (2002) Literature review for micropumps. In: Tay FEH (ed) Microfluidics and BioMEMS applications. Kluwer, Boston, MA

  • Van de Pol FCM, Van Lintel HTG (1990) A thermopneumatic micropump based on micro-engineering techniques. Sens Actuators A, Phys 21:198–202

    Google Scholar 

  • Van Lintel HTG, Van de Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sens Actuators 15:153–167

    Google Scholar 

  • White FM (1998) Fluid mechanics, 4th edn. McGraw-Hill, New York

  • Yamahata C, Chastellain M, Parashar VK, Petri A, Hofmann H, Gijs MAM (2004) Plastic micropump with ferrofluidic actuation. J Microelectromech Syst (in press)

  • Yamahata C, Gijs MAM (2004) Plastic micropumps using ferrofluid and magnetic membrane actuation. In: Proceeding of the 17th IEEE International Conference on Micro electro mechanical systems, Maastricht, The Netherlands, pp 458–461

  • Zhang W, Ahn CH (1996) A bi-directional magnetic micropump on a silicon wafer. Paper presented at the “Solid-state sensor and actuator workshop”, Hilton Head Island, SC, USA

  • Zimmermann S, Frank LA, Liepmann D, Pisano AP (2004) A planar micropump utilizing thermopneumatic actuation and in-plane flap valves. In: Proceeding of the 17th IEEE International Conference on Micro electro mechanical systems, Maastricht, The Netherlands, pp 462–465

Download references

Acknowledgements

The authors gratefully acknowledge the Swiss Commission for Technology and Innovation for financially supporting this project (Project CTI-Medtech 4960.1 MTS) and Dr D. Solignac and Dr A. Donzel for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yamahata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamahata, C., Lotto, C., Al-Assaf, E. et al. A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluid 1, 197–207 (2005). https://doi.org/10.1007/s10404-004-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-004-0007-6

Keywords

Navigation