Skip to main content
Log in

New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic–Lower Cretaceous): two ulvophycean green algae (?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

An Erratum to this article was published on 11 May 2010

Abstract

The Late Jurassic–Lower Cretaceous microorganisms incertae sedis Lithocodium aggregatum Elliott and Bacinella irregularis Radoičić are taxonomically studied based on material from the Lower Aptian of the western Maestrat Basin (Spain). This study is supplemented with detailed photographs from Elliot’s type-material. Given that the original description of Lithocodium aggregatum is ambiguous, a detail from the holotype is chosen as an epitype to serve as an interpretative type (article 9.7 ICBN). Lithocodium is re-interpreted as a filamentous-septate heterotrichale ulvophycean alga (?order Ulotrichales) exhibiting a heteromorphic life cycle consisting of two phases: an epilithic gametophytic and a euendolithic sporophytic (Gomontia stage). Bacinella irregularis is interpreted and redescribed as a purely euendolithic ulvophycean alga which bores into either Lithocodium aggregatum or the substrate below Lithocodium crusts. A small microendolith boring into Lithocodium crusts capable of cryptobiotically stretching within its filamentous network is tentatively assigned to the siphonal chlorophyte Ostreobium Bornet and Flahault. Another associated microfilamentous boring chlorophyte with characteristic long thin hairs (setae) is described as Phaeophila? sp. The euendolithic community comprises a variety of micro- and macroborings that affect the thalli of Lithocodium. Finally, the filaments of the outer zone of the Lithocodium crust are infested by calcimicrobes (cyanobacteria, ?fungi). The description made by Elliott in his original work of the “inner layer” of Lithocodium aggregatum as “confused” is explained here as a complex multitaxon chlorophyte-calcimicrobial assemblage overprinted by multiple bioerosion ichnofabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Banner FT, Finch EM, Simmons MD (1990) On Lithocodium Elliott (Calcareous algae); its paleobiological and stratigraphical significance. J Micropaleontol 9:21–36

    Article  Google Scholar 

  • Bassi D (1997) Vegetative anatomy and palaeoecology of Polystrata alba (Pfender) Denizot, 1968 (Cryptonemiales, Peyssonneliaceae) from the Upper Eocene of northern Italy. Rev Paléobiol 16:309–320

    Google Scholar 

  • Bassoullet JP, Bernier P, Deloffre R, Génot P, Poncet J, Roux A (1983) Les algues Udoteacées du Paléozoïque au Cénozoïque. Bull Centre Rech Explor-Prod Elf-Aquitaine 7:449–621

    Google Scholar 

  • Beckmann JP, Beckmann R (1966) Calcareous algae from the Cretaceous and Tertiary of Cuba. Mém suisses Paléont 85:1–45

    Google Scholar 

  • Bertling M, Insalaco E (1998) Late Jurassic coral/microbial reefs from the northern Paris Basin–facies, palaeoecology and palaeobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol 139:139–175

    Article  Google Scholar 

  • Bertling M, Braddy SJ, Bromley RG, Demathieu GD, Genise J, Mikulas R, Nielsen JK, Nielsen KSS, Rindsberg AK, Schlirf M, Uchman A (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Bover-Arnal T, Salas R, Moreno-Bedmar JA, Bitzer K (2009a) Sequence stratigraphy and architecture of a late Early–Middle Aptian carbonate platform succession from the western Maestrat Basin (Iberian Chain, Spain). Sediment Geol 219:280–301

    Article  Google Scholar 

  • Bover-Arnal T, Salas R, Martín-Closas C, Moreno-Bedmar JA, Bitzer K (2009b) OAE1a coeval Lithocodium-Bacinella binding of coral rubble piles in the Early Aptian of the western Maestrat Basin (E Iberia). In: Basso D, Caragnano A, Bracchi V, Benzoni F (eds) Abstract book—International Fossil Algae Association (IFAA)—6th Regional Symposium, 1–5 July 2009, Milan, Italy, pp 15–16

  • Bover-Arnal T, Moreno-Bedmar JA, Salas R, Skelton PW, Bitzer K, Gili E (2010a) Sedimentary evolution of an Aptian syn-rift carbonate system (Maestrat Basin, E Spain): effects of accommodation and environmental change. Geol Acta (in press)

  • Bover-Arnal T, Salas R, Martín-Closas C, Schlagintweit F, Moreno-Bedmar JA (2010b) Lower Aptian coral rubble deposits from the western Maestrat Basin (Iberian Chain, Spain): records of chemical and physical disturbances. Palaios. (under review)

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Pub 228:455–479

  • Browne KM, Golubić S, Seong-Joo L (2000) Shallow marine microbial carbonate deposits. In: Riding RR, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 233–249

    Google Scholar 

  • Bucur II, Săsăran L, Săsăran E, Schuller V (2004) Micropaleontological study of the limestone olistoliths within the Upper Cretaceous wildflysch from Hăsdate (Eastern border of the Gilău Mountains). Acta Palaeontol Romaniae 4:55–67

    Google Scholar 

  • Budd DA, Perkins RD (1980) Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. J Sediment Petrol 50:881–904

    Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Camoin G, Maurin AF (1988) Roles des microorganismes (bactéries, cyanobactéries) dans la genese des « Mud Mounds ». Exemples du Turonien des Jebels Bireno et Mirhila (Tunisie). C R Acad Sci Paris 307:401–407

    Google Scholar 

  • Canérot J, Crespo A, Navarro D (1979) Montalbán, hoja nº 518. Mapa Geológico de España 1:50.000. 2ª Serie. 1ª Edición. Servicio de Publicaciones, Ministerio de Industria y Energía, Madrid 31 pp

    Google Scholar 

  • Canérot J, Cugny P, Pardo G, Salas R, Villena J (1982) Ibérica Central-Maestrazgo. In: García A (ed) El Cretácico de España. Universidad Complutense de Madrid, Madrid, pp 273–344

    Google Scholar 

  • Carreio-Silva M, McClanahan TR, Kiene WE (2005) The role of inorganic nutrients and herbivory in controlling microbioerosion of carbonate substratum. Coral Reefs 24:214–221

    Article  Google Scholar 

  • Carreio-Silva M, McClanahan TR, Kiene WE (2009) Effects of inorganic nutrients and organic matter on microbial euendoliths community composition and microbioerosion rates. Mar Ecol Prog Ser 392:1–15

    Article  Google Scholar 

  • Chacón E, Berrendero E, Pichel FG (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sed Geol 185:215–228

    Article  Google Scholar 

  • Chafetz HS, Buczynski C (1992) Bacterially induced lithification of microbial mats. Palaios 7:277–293

    Article  Google Scholar 

  • Cherchi A, Schroeder R (2005) Calcimicrobial oncoid coatings from the Pliensbachian Massone Member (Calcare Grigi Formation, Trento Platform, Italy). Preliminary communication. In: Fugagnoli A, Bassi D (eds) Giornata di Studi Paleontologici “Prof. Carmen Loriga Broglio”. Ann Univ Ferrara Vol Spec:45–49

  • Cherchi A, Schroeder R (2006) Remarks on the systematic position of Lithocodium Elliott, a problematic microorganism from the Mesozoic carbonate platforms of the Tethyan realm. Facies 52:435–440

    Article  Google Scholar 

  • Conrad MA, Clavel B (2008) A Lithocodium and Bacinella signature of a late Hauterivian, local microbial event: the Urgonian limestone in south-east France. Geol Croatica 61:239–250

    Google Scholar 

  • Conrad MA, Varol B (1990) Cylindroporella taurica, n. sp., urges to review different patterns of calcification in the Mesozoic Dasycladales (Green Algae). Arch Sci Genève 43:193–214

    Google Scholar 

  • Correa J (1994) Infections by pigmented algal endophytes: misuse of concepts and terminology. Rev Chilena Hist Nat 67:4–8

    Google Scholar 

  • Correa J, Nielsen R, Grund DW, MacLachlan J (1987) Endophytic algae of Irish moss (Chondrus crispus Stackh.). Hydrobiologia 151(152):223–228

    Article  Google Scholar 

  • Correa JA, Nielsen R, Grund DW (1988) Endophytic algae of Chondrus crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J Phycol 24:528–539

    Google Scholar 

  • Daoud H, Bucur II, Sasaran E, Cociuba I (2004) Lower Cretaceous limestones from the northern part of Padurea Craiului (Osoiu Hill and Subpiatra Sections): biostratigraphy and preliminary data on microbial structures. Studia Univ Babes-Bolyai Geol 49:49–62

    Google Scholar 

  • De Castro P (1990) Thaumatoporelle: conoscenze attuali e approcio all′interpretazione. Boll Soc Paleont Ital 29:176–206

    Google Scholar 

  • De Castro P (1997) Introduzione allo studio in sezione sottile delle dasicladali fossili. Quad Accad Pontaniana 22:1–137

    Google Scholar 

  • De Castro P (2002) Thaumatoporella parvovesiculifera (Raineri): typification, age and historical background (Senonian, Sorrento Peninsula–southern Italy). Boll Soc Paleont Ital 41:121–129

    Google Scholar 

  • Dragastan O, Richter DK (2003) Calcareous algae and foraminifers from Neocomian limestones of Methana Peninsula, Asprovouni Mts. (Greece) and from south Dobrogea (Romania). Analele Univ Bucuresti Geol Spec Pub 1:57–128

    Google Scholar 

  • Dragastan O, Golubić S, Richter DK (1996) Rivularia haematites: a case of the recent versus fossil morphology. Taxonomical considerations. Rev Esp Micropal 28:43–73

    Google Scholar 

  • Dupraz C, Strasser A (1999) Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies 40:101–130

    Article  Google Scholar 

  • Dupraz C, Strasser A (2002) Nutritional modes in coral-microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change. Palaios 17:449–471

    Article  Google Scholar 

  • Elliott GF (1956) Further records of fossil calcareous algae from the Middle East. Micropaleontology 2:327–334

    Article  Google Scholar 

  • Elliott GF (1963) Problematical microfossils from the Cretaceous and Paleocene of the Middle East. Palaeontology 6:293–300

    Google Scholar 

  • Elliott GF (1978) Ecologic significance of post-Palaeozoic green calcareous algae. Geol Mag 115:437–442

    Article  Google Scholar 

  • Endo R (1961) Calcareous algae from the Jurassic of Torinosu Limestone. Sci Rep Saitama Univ B Comm Vol: 53–75

  • Erbacher J, Thurow J, Littke R (1996) Evolution pattern of Radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:499–502

    Article  Google Scholar 

  • Fagerstrom AG (1987) The evolution of reef communities. Wiley, New York, p 600

    Google Scholar 

  • Fan KC (1959) Studies on the life histories of marine algae. I. Codiolum petrocelidis and Spongomorpha coalita. Bull Torrey Bot Soc 86:1–12

    Article  Google Scholar 

  • Fenninger A (1972) Die Fauna und Flora der Barmsteinkalk-Bank B2 im Raume des Trattberges (Osterhorngruppe, Salzburg). Ber Haus Nat Salzburg 3:10–23

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks—analysis, interpretation and application. Springer, Berlin Heidelberg New York, 976 pp

    Google Scholar 

  • Försterra G, Beuck L, Häussermann V, Freiwald A (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin Heidelberg New York, pp 937–977

    Chapter  Google Scholar 

  • Foster JS, Green SJ, Ahrendt SR, Golubić S, Reid RP, Hetherington KL, Bebout L (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J 2009:1–15

    Google Scholar 

  • Gall JG (2001) 3.2.4. Role of microbial mats. In: Briggs D, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 280–284

    Chapter  Google Scholar 

  • Gautier F (1980) Villarluengo, hoja nº 543. Mapa Geológico de España 1:50.000. 2ª Serie. 1ª Edición. Servicio de Publicaciones, Ministerio de Industria y Energía, Madrid 45 pp

    Google Scholar 

  • Gektidis M, Dubinsky Z, Goffredo S (2006) Microendoliths of the shallow euphotic zone in open and shaded habitats at 30oN–Eilat, Israel–paleoecological implications. Facies 53:43–55

    Article  Google Scholar 

  • Ghirardelli LA (2002) Endolithic microorganisms in live and dead thalli of coralline red algae (Corallinales, Rhodophyta) in the Northern Adriatic Sea. Acta Geol Hisp 37:53–60

    Google Scholar 

  • Glaub I (1994) Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Courier Forschungsinst Senckenberg 174:1–324

    Google Scholar 

  • Glaub I, Vogel K (2004) The stratigraphic record of microborings. Foss Strata 51:126–135

    Google Scholar 

  • Glaub I, Golubić S, Gektidis M, Radtke G, Vogel K (2007) Microborings and microbial endoliths: geological implications. In: Miller J (ed) Trace fossils. Springer, Berlin Heidelberg New York, pp 368–381

    Chapter  Google Scholar 

  • Golubić S (1983) Kunstharzausgüsse fossiler Mikroben-Bohrgänge. Der Präparator 29:197–200

    Google Scholar 

  • Golubić S, Radtke G (2008) The trace Rhopalia clavigera isp. n. reflects the development of its maker Eugomontia sacculata Kornmann 1960. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin Heidelberg New York, pp 95–108

    Chapter  Google Scholar 

  • Golubić S, Perkins RS, Lucas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Berlin Heidelberg New York, pp 229–259

    Google Scholar 

  • Golubić S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Götz S, Löser H, Schmid DU (2005) Reef development on a deepening platform: two Early Cretaceous coralgal patch reefs (Catí, Llàcova Formation, eastern Spain) compared. Cret Res 26:864–881

    Article  Google Scholar 

  • Granier B (2003) Cretaceous calcareous algae and microbial carbonates from Prebetic Zone (Betic Cordillera, E Spain). In: Braga JC, Aguirre J (eds) 8th International symposium on fossil algae, field trip guide book. Publ Univ Granada, pp 25–34

  • Grötsch J, Koch R, Buser S (1994) Fazies, Gildenstruktur und Diagenese des nördlichen Randes der Dinarischen Karbonatplattform (Barreme-Apt, W-Slowenien). Abh geol Bundesanstalt 50:125–153

    Google Scholar 

  • Guiry MD, Guiry GM (2009) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org

  • Günther A (1990) Distribution and bathymmetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22:233–262

    Article  Google Scholar 

  • Heindel K, Wisshak M, Westphal H (2008) Microbioerosion in Tahitian reefs: a record of environmental change during the last deglacial sea-level rise (IODP 319). Lethaia 42:322–340

    Article  Google Scholar 

  • Helm C (2005) Riffe und fazielle Entwicklung der florigemma-Bank (Korallenoolith, Oxfordium) im Süntel und östlichen Wesergebirge (NW-Deutschland). Geol Beitr Hannover 7:3–339

    Google Scholar 

  • Hillgärtner H, Dupraz C, Hug W (2001) Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators for vadose diagenesis? Sedimentology 48:117–131

    Article  Google Scholar 

  • Höfling R (1985) Faziesverteilung und Fossilvergesellschaftungen im karbonatischen Flachwasser-Milieu der alpinen Oberkreide (Gosau-Formation). Münchner Geowiss Abh 3:1–206

    Google Scholar 

  • Holmes KE, Edinger EN, Limmon HG, Risk MJ (2000) Bioerosion of massive corals and branching coral rubble on Indonesian coral reefs. Mar Poll Bull 40:606–617

    Article  Google Scholar 

  • Hyde KD, Zhang Y (2008) Epitypification: should we epitypify? J Zhejiang Univ Sci B 9:842–846

    Article  Google Scholar 

  • Immenhauser A, Hillgärtner H, Van Bentum E (2005) Microbial-foraminiferal episodes in the Early Aptian of the southern Tethyan margin: ecological significance and possible relation to oceanic anoxic event 1a. Sedimentology 52:77–99

    Article  Google Scholar 

  • Immenhauser A, Huck S, Rameil N, Heimhofer U, Korbar T, Wieczorek TD, Kunkel C (2009) Tethys-wide occurrence of Lower Aptian Lithocodium-Bacinella facies: shoalwater expression of basinal OAE1a black shales. Geochim Cosmochim Acta 73 (Goldschmidt Conference Abstracts):A568

  • Jansa LF, Termier G, Termier H (1982) Les biohermes à algues, spongiaires et coraux des série carbonatées de la flexure bordière du « paleoshelf » au large du Canada oriental. Rev Micropaléontol 25:181–219

    Google Scholar 

  • Johnson HJ (1964) The Jurassic algae. Q Colorado School Min 59:1–129

    Google Scholar 

  • Johnson HJ (1969) A review of the Lower Cretaceous algae. Prof Contr Colorado School Mines 6:1–180

    Google Scholar 

  • Kazmierczak J, Kempe S (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo′ou Island, Tonga. Naturwiss 93:119–126

    Article  Google Scholar 

  • Keupp H, Jenisch A, Herrmann R, Neuweiler F, Reitner J (1993) Microbial carbonate crusts—a key to the environmental analysis of fossil spongolites? Facies 29:41–54

    Article  Google Scholar 

  • Kiene W, Radtke G, Gektidis M, Golubić S, Vogel K (1995) Factors controlling the distribution of microborers in Bahamian reef environments. In: Schuhmacher H, Kiene W, Dullo WC (coord) Factors controlling Holocene reef growth: an interdisciplinary approach. Facies 32:176–184

    Google Scholar 

  • Kitayama T, Garrigue C (1998) Marine algal endophytes new to New Caledonia. Bull Nat Sci Mus Tokyo ser B 24:93–101

    Google Scholar 

  • Kobluk DR, Risk M (1977) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. J Sediment Petrol 47:517–528

    Google Scholar 

  • Koch R, Moussavian E, Ogorelec B, Skaberne D, Bucur II (2002) Development of a Lithocodium (syn. Bacinella irregularis)-reef-mound–A patch reef within Middle Albian lagoonal limestone sequence near Nova Gorica (Sabotin Mountain, W-Slovenia). Geologija 45:71–90

    Google Scholar 

  • Kolodziej B, Golubić S, Radtke G, Bucur II (2008) Fossil record of microendoliths in living coral skeletons. In: Uchman A (ed) The second international congress on ichnology, 28.07–28.09.2008, Kraków, Abstract Book and the Intra-Congress Field Trip Guidebook, p 64

  • Kolodzjei B (1997) Boring foraminifera from exotics of the Stramberk-type limestones (Tithonian-Lower Berriasian, Polish Carpathians). Ann Soc Geol Pol 67:249–256

    Google Scholar 

  • Kornmann P (1959) Die heterogene Gattung Gomontia I. Der sporangiale Anteil, Codiolum polyrhizum. Helgol Mar Res 6:229–238

    Google Scholar 

  • Kornmann P (1960) Die heterogene Gattung Gomontia II. Der fädige Anteil, Eugomontia sacculata nov. gen. nov. spec. Helgol Mar Res 7:59–71

    Google Scholar 

  • Kornmann P (1961) Über Codiolum und Urospora. Helgol Mar Res 8:42–57

    Google Scholar 

  • Kornmann P (1962) Die Entwicklung von Monostroma grevillei. Helgol Mar Res 8:195–202

    Google Scholar 

  • Kornmann P (1970) Der Lebenszyklus von Acrosiphonia grandis (Acrosiphoniales, Chlorophyta). Mar Biol 7:324–331

    Article  Google Scholar 

  • Kuss J (1983) Faziesentwicklung in proximalen Intraplattform-Becken: Sedimentation, Palökologie und Geochemie der Kössener Schichten (Ober-Trias, Nördliche Kalkalpen). Facies 9:61–172

    Article  Google Scholar 

  • Le Campion-Alsumard T (1979) Les Cyanophycées endolithes marines. Systématique, ultrastructure, écologie et biodestruction. Ocean Acta 2:143–156

    Google Scholar 

  • Le Campion-Alsumard T, Golubić S, Hutchings P (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Press Ser 117:149–157

    Article  Google Scholar 

  • Leinfelder RR (1985) Cyanophyte calcification morphotypes and depositional environments (Alenquer Oncolite, Upper Kimmeridgian? Portugal). Facies 12:253–274

    Article  Google Scholar 

  • Leinfelder RR (1986) Facies, stratigraphy and paleogeographic analysis of Upper? Kimmeridgian to Upper Portlandian sediments in the environs of Arruda dos Vinhos, Estremadura, Portugal. Münchner Geowiss Abh A 7:1–216

    Google Scholar 

  • Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer, Plenum, New York, pp 251–309

    Google Scholar 

  • Leinfelder RR, Nose M, Schmid DU, Werner W (1993) Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction. Facies 29:195–230

    Article  Google Scholar 

  • Leinfelder RR, Schlagintweit F, Werner W, Ebli O, Nose M, Schmid DU, Hughes GW (2005) Significance of stromatoporoids in Jurassic reefs and carbonate platforms. Concepts and implications. Facies 51:287–325

    Article  Google Scholar 

  • Lukas K (1974) Two species of the chlorophyte genus Ostreobium from skeletons of Atlantic and Caribbean reef corals. J Phycol 10:331–335

    Google Scholar 

  • Luperto Sinni E (1979) I microfossili del “livello a Palorbitolina lenticularis” delle Murge Baresi. Riv Ital Paleont 85:411–480

    Google Scholar 

  • Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921

    Article  Google Scholar 

  • Magnusson SH, Fine M, Kühl M (2007) Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser 332:119–128

    Article  Google Scholar 

  • Masse JP (1979) Schizophytoides du Crétacé Inférieur caractéristiques et signification écologique. Bull Cent Rech Explor Prod Elf Aquitaine 3:685–703

    Google Scholar 

  • Massieux M, Denizot M (1964) Rapprochement du genre Pseudolithothamnium Pfender avec le genre actuel Ethelia Weber Van Bosse (Algues Florideae, Squamariaceae). Rev Micropaleontol 7:31–42

    Google Scholar 

  • Matyszkiewicz J, Slomka T (2004) Reef-microencrusters association Lithocodium aggregatum-Bacinella irregularis from the Cieszyn Limestone (Tithonian-Berriasian) of the outer Western Carpathians (Poland). Geol Carpathica 55:449–456

    Google Scholar 

  • Maurin AF, Bernet-Rollande MC, Monty CLV, Nazhat S (1985) The microbial nature of bacinellid textures. Sedimentological bearings. In: 9th European regional meeting of sedimentology, Leiden, abstracts, pp 285–287

  • McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE et al. (2006) International code of botanical nomenclature (Vienna Code). Available from http://ibot.sav.sk/icbn/main.htm (Accessed Aug. 2008)

  • Merz MUE, Zankl H (1993) The influence of culture conditions on growth and sheath development of calcifying Cyanobacteria. Facies 29:75–80

    Article  Google Scholar 

  • Mišík M (1979) Jurassic and Cretaceous algae (Dasycladales excepted) from the West Carpathians. Bull Centres Rech Explor Prod Elf Aquitaine 3:705–712

    Google Scholar 

  • Moreno-Bedmar JA, Company M, Bover-Arnal T, Salas R, Delanoy G, Martínez R, Grauges A (2009) Biostratigraphic characterization by means of ammonoids of the lower Aptian Oceanic Anoxic Event (OAE1a) in the eastern Iberian Chain (Maestrat Basin, eastern Spain). Cretaceous Res 30:864–872

    Article  Google Scholar 

  • Moreno-Bedmar JA, Company M, Bover-Arnal T, Salas R, Maurrasse FJ, Delanoy G, Grauges A, Martínez R (2010) Lower Aptian ammonite biostratigraphy in the Maestrat Basin (eastern Iberian chain, Spain). Geologica Acta (in press)

  • Mu X (1991) Fossil Udoteaceae and Gymnocodiaceae. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 146–166

    Google Scholar 

  • Neuweiler F, Reitner J (1992) Karbonatbänke mit Lithocodium aggregatum Elliott/Bacinella irregularis Radoičić. Paläobathymetrie, Paläoökologie und stratigraphisches Äquivalent zu thrombolithischen Mud Mounds. Berliner Geowiss Abh 3:273–293

    Google Scholar 

  • Nielsen R (1987) Marine algae within calcareous shells from New Zealand. N Z J Bot 25:425–438

    Google Scholar 

  • Noffke N (2008) Turbulent lifestyle: microbial mats on earth′s sandy beaches—today and 3 billion years ago. GSA Today 18. doi: 10.1130/GSATG7A.1

  • O′Kelly CJ, Wysor B, Bellows WK (2004) Collinsiella (Ulvophyceae, Chlorophyta) and other Ulotrichalean taxa with shell-boring sporophytes form a monophyletic clade. Phycologia 43:41–49

    Article  Google Scholar 

  • Pantazidou A, Louvrou I, Economou-Amilli A (2006) Euendolithic shell-boring cyanobacteria and chlorophytes from the saline lagoon Ahivadolimni on Milos, Island, Greece. Eur J Phycol 41:189–200

    Article  Google Scholar 

  • Perry CT (1998) Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:39–51

    Article  Google Scholar 

  • Perry CT, Macdonald IA (2002) Impacts of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimat Palaeoecol 186:101–113

    Article  Google Scholar 

  • Poignant AF (1968) Les algues des calcaires aptiens et albiens de l′Aquitaine méridionale. Rev Micropaleontol 10:271–276

    Google Scholar 

  • Pratt BR (1995) The origin, biota and evolution of deep-water mud-mounds. In: Monty CLV, Bosence D, Bridges PH, Pratt BR (eds) Carbonate mud-mounds, their origin and evolution. Int Assoc Sediment Spec Publ 23:49–123

  • Pröschold T, Leliaert F (2007) Systematics of the green algae: Conflict of classic and modern approaches In: Brodie J, Lewis JM (eds) Unravelling the algae: the past, present, and future of algal systematics. Taylor and Francis, pp 123–153

  • Radoičić R (1959) Nekoliko problematicnih mikrofosila iz dinarske krede (some problematic microfossils from the Dinarian Cretaceous). Vesnik 17:87–92

    Google Scholar 

  • Radoičić R (2005) New Dasycladales and microbiota from the lowermost Valanginian of the Mirdita Zone. Ann Géol Pénins Balk 66(2004–2005):27–53

    Article  Google Scholar 

  • Radtke G (1991) Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Cour Forsch-Inst Senckenberg 138:1–185

    Google Scholar 

  • Radtke G, Golubić S (2005) Microborings in mollusk shells, Bay of Safaga, Egypt: Morphometry and ichnnology. Facies 51:118–134

    Article  Google Scholar 

  • Raineri R (1922) Alghe sifonee fossili della Libia. Nota I. Atti Soc Ital Sc Nat Museo Civico 61:72–86

    Google Scholar 

  • Rameil N, Immenhauser A, Warrlich G, Hillgärtner H, Droste HJ (2010) Morphological patterns of Aptian Lithocodium-Bacinella geobodies—relation to environment and scale. Sedimentology. doi: 10.1111/j.1365-3091.2009.01124.x

  • Raven JA (2002) The evolution of cyanobacterial symbioses. Proc R Irish Acad 102B:3–6

    Article  Google Scholar 

  • Reid P, Macintyre IG (2000) Microboring versus recrystallization: further insight into the micritization process forming micritized grains. J Sediment Res 70:24–28

    Article  Google Scholar 

  • Reitner J (1987) Mikrofazielle, palökologische und paläogeographische Analyse ausgewählter Vorkommen flachmariner Karbonate im Basko-kantabrischen Strike Slip Fault-Becken-System (Nordspanien) an der Wende von der Unterkreide zur Oberkreide. Documenta Nat 40:1–239

    Google Scholar 

  • Riding R (1977) Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology 20:33–46

    Google Scholar 

  • Riding R (1991a) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 55–87

    Google Scholar 

  • Riding R (1991b) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin Heidelberg New York, pp 21–51

    Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(supplement 1):179–214

    Article  Google Scholar 

  • Riding R (2006) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  Google Scholar 

  • Rose CS, Risk MJ (1985) Increase in Cliona delitrix infestation on Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar Ecol 6:345–363

    Article  Google Scholar 

  • Round FE (1981) The ecology of algae. Cambridge University Press, Cambridge, p 664

    Google Scholar 

  • Salas R, Guimerà J, Martín-Closas C, Meléndez A, Alonso A (2001) Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian Chain). In: Ziegler PA, Cavazza W, Roberston AHF, Crasquin-Soleau S (eds) Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém Mus Nat Hist Nat Paris 186:145–186

  • Săsăran E, Bucur II, Prica I (2001) Microfacies and microfossils in Upper Jurassic limestones from the Cheile Turenilor. Studia Univ Babeş-Bolyai Geol 46:35–52

    Google Scholar 

  • Schäfer P, Senowbari-Daryan B (1983) Die Kalkalgen aus der Obertrias von Hydra, Griechenland. Palaeontographica 185:83–142

    Google Scholar 

  • Schlagintweit F (1991) Allochthone Urgonkalke im Mittleren Abschnitt der Nördlichen Kalkalpen: Fazies, Paläontologie und Paläogeographie. Münchner Geowiss Abh 20:1–120

    Google Scholar 

  • Schlagintweit F (2008) Bioerosional structures and pseudoborings from Late Jurassic and Late Cretaceous-Paleocene shallow-water carbonates (Northern Calcareous Alps, Austria; SE France) with special reference to cryptobiotic foraminifera. Facies 54:377–402

    Article  Google Scholar 

  • Schlagintweit F, Ebli O (1999) New results on microfacies, biostratigraphy and sedimentology of Late Jurassic–Early Cretaceous platform carbonates of the Northern Calcareous Alps. Part I: Tressenstein limestone, Plassen-formation. Abh Geol BA 56:379–418

    Google Scholar 

  • Schlagintweit F, Gawlick HJ, Lein R (2005) Mikropaläontologie und Biostratigraphie der Plassen-Karbonatplattform der Typlokalität (Ober-Jura bis Unter-Kreide, Salzkammergut, Österreich). J Alpine Geol (Mitt Ges Geol Bergbaustud Österr) 47:11–102

    Google Scholar 

  • Schmid DU (1996) Marine Mikrobolithe und Mikroinkrustierer aus dem Oberjura. Profil 9:101–251

    Google Scholar 

  • Schmid DU, Leinfelder RR (1996) The Jurassic Lithocodium aggregatum-Troglotella incrustans foraminiferal consortium. Palaeontology 39:21–52

    Google Scholar 

  • Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurter Geowiss Arb 12:1–228

    Google Scholar 

  • Scholz H (1979) Paläontologie, Aufbau und Verbreitung der Bioherme und Biostrome im Allgäuer Schrattenkalk (Helvetikum, Unterkreide). Unpublished PHD thesis TU Munich, 133 pp

  • Schott M (1983) Sedimentation und Diagenese einer absinkenden Karbonatplattform: Rhät und Lias des Brünnstein-Auerbach-Gebietes, Bayerische Kalkalpen. Facies 9:1–60

    Article  Google Scholar 

  • Schroeder JH (1972) Calcified filaments of an endolithic alga in recent Bermuda reefs. N J Geol Paläont Mh 16–33

  • Schroeder R (1975) General evolutionary trends in orbitolinas. Rev Esp Micropaleontol Numero Especial 1987:117–128

    Google Scholar 

  • Scoffin TP, Bradshaw C (2000) The taphonomic significance of endoliths in dead-versus live-coral skeletons. Palaios 15:248–254

    Google Scholar 

  • Segonzac G, Marin P (1972) Lithocodium aggregatum Elliott et Bacinella irregularis Radoičić de l′Aptien de Teruel (Espagne): deux stades de croissance d′un seul et meme organisme incertae sedis. Bull Soc géol France (Série 7) 14:331–335

    Google Scholar 

  • Senowbari-Daryan B (1980) Fazielle und paläontologische Untersuchungen in oberrhätischen Riffen (Feichtenstein- und Gruberriff bei Hintersee, Salzburg, Nördliche Kalkalpen). Facies 3:1–237

    Article  Google Scholar 

  • Senowbari-Daryan B (1984) Mikroproblematika aus den obertriadischen Riffkalken von Sizilien. Münstersche Forsch Geol Paläontol 61:1–81

    Google Scholar 

  • Senowbari-Daryan B, Bucur II, Abate B (1994) Upper Jurassic calcareous algae from the Madonie Mountains, Sicily. Beitr Paläont 19:227–259

    Google Scholar 

  • Setchell WA, Gardner NL (1903) Algae of northwestern America. Univ California Pub Bot 1:165–418

    Google Scholar 

  • Setchell WA, Gardner NL (1920) The marine algae of the Pacific Coast of north America. Part II Chlorophyceae. Univ California Pub Bot 8:139–374

    Google Scholar 

  • Shen JW, Qing H (2008) Calcimicrobes, microbial fabrics, and algae in Mississippian Midale Beds, Midale and Glen Ewen Pools, Williston Basin, southeastern Saskatchewan. Summary of investigation, Saskatchewan. Geol Surv Misc Rep 2008-4.1:1–10

  • Shen JW, Webb GE (2008) The role of microbes in reef-building communities of the Cannindah limestone (Mississippian), Monto region, Queensland, Australia. Facies 54:89–105

    Article  Google Scholar 

  • Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewerage diversion experiment. Perspectives on ecosystem responses to nutritional perturbations. Pac Sci 35:279–395

    Google Scholar 

  • Srinivasan KS (1962) Report on Phaeophila dendroides (Crouan) Batters endophytic in Rosenvingea intricata (J. Ag.) Boergs. Bull Bot Survey India 3:111–113

    Google Scholar 

  • Stal LJ (2007) Cyanobacteria: diversity and versatility, clues to life in extreme environments. In: Seckbach J (ed) Algae and Cyanobacteria in extreme environments. Springer, Berlin Heidelberg New York, pp 659–680

    Chapter  Google Scholar 

  • Stanton RJ, Flügel E (1989) Problems with reef models: The Late Triassic Steinplatte “reef” (Northern Alps, Salzburg/Tyrol, Austria). Facies 20:1–138

    Article  Google Scholar 

  • Steuber T (2001) Strontium isotope stratigraphy of Turonian-Campanian Gosau-type rudist formations in the Northern Calcareous Alps (Austria and Germany). Cretaceous Res 22:429–441

    Article  Google Scholar 

  • Sumner DY (1997) Late Archean calcite-microbe interactions: two morphologically distinct microbial communities that affected calcite nucleation differently. Palaios 12:302–318

    Article  Google Scholar 

  • Sussmann AV, DeWreede RE (2001) Life history of Acrosiphonia (Codiolales, Chlorophyta) in southwestern British Columbia, Canada. Am J Bot 88:1535–1544

    Article  Google Scholar 

  • Tapanila L, Cooper P, Edinger E (2004) Environmental and substrate control on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, Eastern Canada. Palaios 19:292–306

    Article  Google Scholar 

  • Thivy F (1943) New records of some marine Chaetophoraceae and Chaetosphaeridiaceae for North America. Biol Bull 85:244–264

    Article  Google Scholar 

  • Tribollet A (2007) The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin Heidelberg New York, pp 67–94

    Google Scholar 

  • Tribollet A (2008) Dissolution of dead corals by euendolithic microorganisms across the northern Great Barrier Reef (Australia). Microbial Ecol 55:569–580

    Article  Google Scholar 

  • Tribollet A, Payri C (2001) Bioerosion of the coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea, French Polynesia. Oceanol Acta 24:329–342

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford, p 482

    Book  Google Scholar 

  • Turnsek D, Buser S (1966) The development of the Lower Cretaceous beds and the boundary between Jurassic and Cretaceous formations in the western part of Trnovski Gozd. Geologija 9:543–548

    Google Scholar 

  • Vachard D, Hauser M, Martini R, Zaninetti L, Matter A, Peters T (2001) New algae and problematica of algal affinity from the Permian of the Aseelah Unit of the Batain Plain (East Oman). Géobios 34:375–404

    Article  Google Scholar 

  • Védrine S, Strasser A, Hug W (2007) Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53:535–552

    Article  Google Scholar 

  • Waite LW, Scott RW, Kerans C (2007) Middle Albian age of the regional dense marker bed of the Edwards Group, Pawnee Field, South-Central Texas. Gulf Coast Assoc Geol Sci Transact 57:759–774

    Google Scholar 

  • Wilkinson M, Burrows EM (1972) An experimental taxonomic study of the algae confused under the name Gomontia polyrhiza. J Mar Biol Ass UK 52:49–57

    Article  Google Scholar 

  • Wisshak M (2006) High-latitude bioerosion—the Kosterfjord experiment. Lecture Notes Earth Sci 109:1–202

    Article  Google Scholar 

  • Wisshak M, Seuß B, Nützel A (2008) Evolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt lagerstätte (Oklahoma, USA). In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin Heidelberg New York, pp 21–54

    Chapter  Google Scholar 

  • Wood R (1999) Reef evolution. Oxford University Press, Oxford, p 414

    Google Scholar 

  • Wurm D (1982) Mikrofazies, Paläontologie und Palökologie der Dachsteinriffkalke (Nor) des Gosaukammes, Österreich. Facies 6:203–296

    Article  Google Scholar 

  • Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia 6(3):445–503

    Google Scholar 

Download references

Acknowledgments

The Natural History Museum in London is especially thanked for preparing new photographs of the type-material of Lithocodium aggregatum Elliott. Boguslaw Kolodziej (Kraków), Ioan Bucur and Emanoil Săsăran (both Cluj-Napoca), Martin Nose (Munich), Rajka Radoičić (Belgrade), and Stefan Götz (Heidelberg) kindly provided figures from Upper Jurassic–Lower Cretaceous material. The present work benefitted from discussions with Marc Conrad (Perly) and Rolf Schroeder (Frankfurt a. Main). We also thank Josep A. Moreno-Bedmar (Barcelona) for his help in sampling. Funding for this study came from the project Bi 1074/1-2 of the Deutsche Forschungsgemeinschaft, the I + D + i research projects: CGL2005-07445-CO3-01 and CGL2008-04916, the Consolider-Ingenio 2010 programme, under CSD 2006-0004 “Topo-Iberia” and the Grup Consolidat de Recerca “Geologia Sedimentària” (2009SGR-1451). Review comments by Ioan Bucur (Cluj-Napoca) and anonymous reviewers are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Schlagintweit.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10347-010-0223-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlagintweit, F., Bover-Arnal, T. & Salas, R. New insights into Lithocodium aggregatum Elliott 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic–Lower Cretaceous): two ulvophycean green algae (?Order Ulotrichales) with a heteromorphic life cycle (epilithic/euendolithic). Facies 56, 509–547 (2010). https://doi.org/10.1007/s10347-010-0222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-010-0222-4

Keywords

Navigation