Skip to main content

Advertisement

Log in

Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafoʻou Island, Tonga

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Calcareous or dolomitic, often secondarily silicified, laminated microbial structures known as stromatolites are important keys to reconstruct the chemical and biotic evolution of the early ocean. Most authors assume that cyanobacteria-associated microbialitic structures described from Shark Bay, Western Australia, and Exuma Sound, Bahamas, represent modern marine analogues for Precambrian stromatolites. Although they resemble the Precambrian forms macroscopically, their microstructure and mineralogical composition differ from those characterizing their purported ancient counterparts. Most Precambrian stromatolites are composed of presumably in situ precipitated carbonates, while their assumed modern marine analogues are predominantly products of accretion of grains trapped and bound by microbial, predominantly cyanobacterial, benthic mats and biofilms and only occasionally by their physicochemical activity. It has therefore been suggested that the carbonate chemistry of early Precambrian seawater differed significantly from modern seawater, and that some present-day quasi-marine or non-marine environments supporting growth of calcareous microbialites reflect the hydrochemical conditions controlling the calcification potential of Precambrian microbes better than modern seawater. Here we report the discovery of a non-marine environment sustaining growth of calcareous cyanobacterial microbialites showing macroscopic and microscopic features resembling closely those described from many Precambrian stromatolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc Natl Acad Sci U S A 85:1327–1329

    Article  PubMed  CAS  Google Scholar 

  • Bertrand-Sarfati J (1976) An attempt to classify late Precambrian stromatolite microstructures. In: Walter MR (ed) Stromatolites. Developments in sedimentology 20. Elsevier, Amsterdam, pp 251–258

    Google Scholar 

  • Bjerrum CJ, Canfield DE (2002) Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto ion oxides. Nature 417:150–162

    Article  CAS  Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology32:473-476

    Article  CAS  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5:161–181

    Article  Google Scholar 

  • Cabrol N, Wynn-Williams DD, Crawford DA, Grin EA (2001) Recent aqueous environments in Martian impact craters: an astrobiological perspective. Icarus 154:98–112

    Article  CAS  Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453

    Article  CAS  Google Scholar 

  • Dill RF, Shinn EA, Jones AT, Kelly K, Steinen R (1986) Giant subtidal stromatolites forming in normal salinity water. Nature 324:55–58

    Article  Google Scholar 

  • Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386

    Article  PubMed  CAS  Google Scholar 

  • Fairchild IJ (1991) Origins of carbonate in Neoproterozoic stromatolites and the identification of modern analogues. Precambrian Res 53:281–299

    Article  CAS  Google Scholar 

  • Fairchild IJ, Marshall JD, Bertrand-Sarfati J (1990) Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauretania): influences of primary mineralogy and diagenesis. Am J Sci 290-A:46–79

    Google Scholar 

  • Ginsburg RN (1991) Controversies about stromatolites: vices and virtues. In: Müller DW, McKenzie JA, Weissert H (eds) Controversies in modern Geology. Academic Press, London, pp 25–36

    Google Scholar 

  • Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geol 101:235–243

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383, 423–425

    Article  CAS  Google Scholar 

  • Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean ocean. Science 298:2372–2374

    Article  PubMed  CAS  Google Scholar 

  • Hofmann HJ (1969) Stromatolites from the Proterozoic Animikie and Sibley groups, Ontario. Geol Surv Can Pap 68–69:1–77

    Google Scholar 

  • Hofmann HJ (1975) Stratiform Precambrian stromatolites, Belcher Islands, Canada: relations between silicified microfossils and microstructure. Am J Sci 275:1121–1132

    Article  Google Scholar 

  • Hofmann HJ, Jackson GD (1987) Proterozoic ministromatolites with radial-fibrous fabric. Sedimentology 34:963–971

    Article  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and the oceans. Princeton University Press, Princeton

    Google Scholar 

  • Horodyski RJ (1975) Stromatolites of the Lower Missoula Group (middle Proterozoic), Belt Supergroup, Glacier National Park, Montana. Precambrian Res 2:215–254

    Article  Google Scholar 

  • Jaggar TA (1935) Living on a volcano—an unspoiled patch of Polynesia is Niuafoo, nicknamed “Tin Can Island” by stamp collectors. Natl Geogr 68:91–106

    Google Scholar 

  • Kazmierczak J, Ittekott V, Degens ET (1985) Biocalcification through time: environmental challenge and cellular response. Paläontol Z 59:15–33

    Google Scholar 

  • Kazmierczak J, Kempe S, Altermann W (2004) Microbial origin of Precambrian carbonates: lessons from modern analogues. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 545–564

    Google Scholar 

  • Kempe S (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften 77:426–427

    Article  CAS  Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak J (1990) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: Ittekkot VA, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry. Springer, Berlin Heidelberg New York, pp 255–278

    Google Scholar 

  • Kempe S, Kazmierczak J (1993) Satonda Crater Lake, Indonesia: hydrogeochemistry and biocarbonates. Facies 28:1–32

    Article  Google Scholar 

  • Kempe S, Kazmierczak J (1994) The role of alkalinity in the evolution of ocean chemistry organization of living systems and biocalcification processes. In: Doumenge F (ed) Past and present biomineralization processes—considerations about the carbonate cycle. Bull Inst Oceanogr Monaco No Spec 13:61–117

    Google Scholar 

  • Kempe S, Kazmierczak J (1997) A terrestrial model for an alkaline Martian hydrosphere. Planet Space Sci 45:1493–1499

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak J (2002) Biogenesis and early life on Earth and Europa: favored by an alkaline ocean? Astrobiology 2:123–130

    Article  PubMed  CAS  Google Scholar 

  • Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349:605–608

    Article  Google Scholar 

  • Knoll AH, Semikhatov MA (1998) The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios 13:408–422

    Article  Google Scholar 

  • Knoll AH, Swett K, Burkhardt E (1989) Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen. J Paleontol 63:129–145

    PubMed  CAS  Google Scholar 

  • Lanier WP (1988) Structure and morphogenesis of microstromatolites from the Transvaal Supergroup, South Africa. J Sediment Petrol 58:89–99

    Google Scholar 

  • Logan BW (1961) Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. J Geol 69:517–533

    Article  Google Scholar 

  • López-Garcia P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the microbialites of the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274

    Article  PubMed  CAS  Google Scholar 

  • Lowe DR, Tice MT (2004) Geologic evidence for Archean atmospheric and climatic evolution: fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32:493–496

    Article  CAS  Google Scholar 

  • Maslov VP (1961) Vodorosli i karbonatoosazhdenye (Algae and carbonate deposition). Izv Akad Nauk SSSR Ser Geol 12:81–86 (in Russian)

    Google Scholar 

  • McCord TB, Hansen GB, Matson DL et al (1999) Hydrated salt minerals on Europaʻs surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104(E5):11827–11851

    Article  Google Scholar 

  • Merz-Preib M, Riding R (1999) Cyanobacterial tufa calcification in two freshwater streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126:103–124

    Article  Google Scholar 

  • Myrow PM, Coniglio M (1991) Origin and diagenesis of cryptobiotic Frutexites in the Chapel Island Formation (Vendian to Early Cambrian) of southeast Newfoundland, Canada. Palaios 6:572–585

    Article  Google Scholar 

  • Ohmoto H (2004) The Archean atmosphere, hydrosphere and biosphere. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 361–403

    Google Scholar 

  • Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE—a computer program for geochemical calculations. US Geol Surv Water Resour Invest Rep 80–96:1–210

    Google Scholar 

  • Petrychenko OY, Peryt TM, Chechel EI (2005) Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporates. Chem Geol 219:149–161

    Article  CAS  Google Scholar 

  • Playford PE, Cockbain AE (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR (ed) Stromatolites. Developments in sedimentology 20. Elsevier, Amsterdam, pp 389–411

    Google Scholar 

  • Rasmussen KA, Macintyre IG, Prufert L (1993) Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize. Geology 21:199–202

    Article  Google Scholar 

  • Reid RP, Browne KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19:15–18

    Article  Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, Des Marais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    Article  PubMed  CAS  Google Scholar 

  • Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324

    Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47(Suppl. 1):179–214

    Article  CAS  Google Scholar 

  • Riding R, Awramik SM, Winsborough BM, Griffin KM, Dill RF (1991) Bahamian giant stromatolites: microbial composition of surface mats. Geol Mag 128:227–234

    Google Scholar 

  • Rogers G (ed) (1986) The fire has jumped. Eyewitness accounts of the eruption and evacuation of Niuafoʻou. Tonga Institute of Pacific Studies, University of the South Pacific, Suva

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015

    Google Scholar 

  • Walter MR (1983) Archean stromatolites: evidence of the Earthʻ earliest benthos. In: Schopf JW (ed) Earthʻs earliest biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Walter MR, Awramik SA (1979) Frutexites from stromatolites of the Gunflint Iron-Formation of Canada, and its biological affinities. Precambrian Res 9:23–33

    Article  Google Scholar 

Download references

Acknowledgements

We especially thank Mr. Semisi Halaholo, the government representative on Niuafoʻou, for organizing human and logistic help during our stay on the island. We also thank Ralf Hinsch for field assistance. 14C dating of stromatolites and wood samples and δ13C analyses of water samples were performed by J. van der Plicht (Centrum voor Isotopen Onderzoek, Groningen). The laboratory assistance of C. Kulicki and M. Kuzniarski (Warsaw) is greatly appreciated. Financial support was provided by the Deutsche Forschungsgemeinschaft, Polish Academy of Sciences and the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Kazmierczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazmierczak, J., Kempe, S. Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafoʻou Island, Tonga. Naturwissenschaften 93, 119–126 (2006). https://doi.org/10.1007/s00114-005-0066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0066-x

Keywords

Navigation