Skip to main content

Advertisement

Log in

New insights on the distribution and habitat of Ulvella endozoica (Ulvellaceae, Chlorophyta) in the tropical Southwestern Atlantic, based on thallus ontogeny in culture and DNA barcoding

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The small size (< 5 mm) of marine microfilamentous green algae makes it difficult to identify based on field collections, remaining largely unnoticed. To catalogue the diversity of these diminutive marine algae, a combination of culture-based taxonomic studies and DNA barcoding has proven to be a successful approach. During subtidal surveys in the northeastern Brazil, microfilamentous green algae were isolated as epiphytes on red algae cultured in laboratory. In this work, we used thallus ontogeny and plastid tufA gene sequences to elucidate the taxonomic identity of these isolates. Molecular and morphological evidence revealed that Brazilian specimens correspond to Ulvella endozoica, a poorly known species thought to be endemic to Florida, its type locality. Since U. endozoica was not found in gorgonian corals, as in the original description, this species does not follow a host specificity pattern, growing in more diverse substrata than previously thought. The origin of U. endozoica in Brazil remains undetermined, and we concluded that it is a cryptogenic species. Limited sampling, troublesome taxonomy, and difficulty in finding Ulvella species make them overlooked in Western Atlantic, resulting in taxonomic and biogeographic gaps. Our results expand southward the known distribution range of U. endozoica, demonstrating that an integrative barcode and laboratory culture-based approach is critical to uncover these inconspicuous algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Barata D, Fujii MT (2006) Ctenocladaceae e Ulvellaceae (Chlorophyta) do Espírito Santo e litoral norte de São Paulo, Brasil. Hoehnea 33:359–370

    Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW (2018) GenBank. Nucleic Acids Res 46:41–47

    Article  Google Scholar 

  • Bernard M, Strittmatter M, Murúa P, Heesch S, Cho GY, Leblanc C, Peters AF (2019) Diversity, biogeography and host specificity of kelp endophytes with a focus on the genera Laminarionema and Laminariocolax (Ectocarpales, Phaeophyceae). Eur J Phycol 54:39–51

    Article  CAS  Google Scholar 

  • Bown P, Plumb J, Sánchez-Baracaldo P, Hayes PK, Brodie J (2003) Sequence heterogeneity of green (Chlorophyta) endophytic algae associated with a population of Chondrus crispus (Gigartinaceae, Rhodophyta). Eur J Phycol 38:153–163

    Article  CAS  Google Scholar 

  • Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77:1653–1655

    Article  Google Scholar 

  • Chapman ARO (1986) Population and community ecology of seaweeds. In: Blaxter JHS, Southwood AJ (eds) Advances in marine biology. Academic Press, London, pp 1–161

    Google Scholar 

  • Cordeiro R, McFadden C, van Ofwegen L, Williams G (2020) World list of Octocorallia. Pseudoplexaura Wright & Studer, 1889. http://www.marinespecies.org/aphia.php?p=taxdetails&id=267779. Accessed on 18 October 2020

  • Díaz-Tapia P, Bárbara I, Cremades J, Verbruggen H, Maggs CA (2017) Three new cryptogenic species in the tribes Polysiphonieae and Streblocladieae (Rhodomelaceae, Rhodophyta). Phycologia 56:605–623

    Article  Google Scholar 

  • Díaz-Tapia P, Baldock L, Maggs CA (2020) Discovery of Flabellia petiolata (Halimedaceae, Chlorophyta) in the southern British Isles: a relict population or a new introduction. Aquat Bot 160:103160

    Article  Google Scholar 

  • Famà P, Wysor B, Kooistra WHCB, Zuccarello GC (2002) Molecular phylogeny of the genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. J Phycol 38:1040–1050

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Geoffroy A, Destombe C, Kim B, Mauger S, Raffo MP, Kim MS, Le Gall L (2016) Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations. Ecol Evol 6:5635–5647

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg WM, Makemson JC, Colley SB (1984) Entocladia endozoica sp. nov., a pathogenic chlorophyte: structure, life history, physiology, and effect on its coral host. Biol Bull 166:368–383

    Article  Google Scholar 

  • Gomoiu MT, Alexandrov B, Shadrin N, Zaitsev Y (2002) The Black Sea – a recipient, donor and transit area for alien species. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe. Distribution, impacts and management. Springer, Dordrecht, pp 341–350

    Chapter  Google Scholar 

  • Guimarães-Costa AJ, Machado FS, Oliveira RRS, Silva-Costa V, Andrade MC, Giarrizzo T, Saint-Paul U, Sampaio I, Schneider H (2019) Fish diversity of the largest deltaic formation in the Americas – a description of the fish fauna of the Parnaíba Delta using DNA barcoding. Sci Rep 9:7530

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. Worldwide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed on 09 October 2020

  • Gunnarsson K, Nielsen R (2016) Culture and field studies of Ulvellaceae and other microfilamentous green seaweeds in subarctic and arctic waters around Iceland. Nova Hedwigia 103:17–46

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hansen GI, Hanyuda T, Kawai H (2018) Invasion threat of benthic marine algae arriving on Japanese tsunami marine debris in Oregon and Washington, USA. Phycologia 57:641–658

    Article  Google Scholar 

  • Hansen GI, West JA, Yoon HS, Goodman CD, Goër SL, Zuccarello GC (2019) Viator vitreocola gen. et sp. nov. (Stylonematophyceae), a new red alga on drift glass debris in Oregon and Washington, USA. Algae 34:71–90

    Article  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O’Hara TD, Poore GCB, Ross DJ, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202

    Article  Google Scholar 

  • Hoffmann AJ, Santelices B (1991) Banks of algal microscopic forms: hypotheses on their functioning and comparisons with seed banks. Mar Ecol Prog Ser 79:185–194

    Article  Google Scholar 

  • Joly AB, Cordeiro M (1963) Two new species of Acrochaetium from southern Brazil. Bol Fac Fil Ciênc Let Univ S Paulo 19:135–146

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leliaert F, Rueness J, Boedeker C, Maggs CA, Cocquyt E, Verbruggen H, De Clerck O (2009) Systematics of the marine microfilamentous green algae Uronema curvatum and Urospora microscopica (Chlorophyta). Eur J Phycol 44:487–496

    Article  CAS  Google Scholar 

  • Lewin J (1966) Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1–12

    Article  CAS  Google Scholar 

  • Maggs CA, Callow ME (2002) Algal spores. In: Encyclopedia of life sciences. Macmillan Publishers Ltd., Nature Publishing Group, London, pp 1–6

    Google Scholar 

  • Marcelino VR, Verbruggen H (2016) Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep 6:31508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen R, Petersen G, Seberg O, Daugbjerg N, O’Kelly CJ, Wysor B (2013) Revision of the genus Ulvella (Ulvellaceae, Ulvophyceae) based on morphology and tufA gene sequences of species in culture, with Acrochaete and Pringsheimiella placed in synonymy. Phycologia 52:37–56

    Article  Google Scholar 

  • Nielsen R, Gunnarsson K, Daugbjerg N, Petersen G (2014) Description of Ulvella elegans sp. nov. and U. islandica sp. nov. (Ulvellaceae, Ulvophyceae) from Iceland – a study based on morphology of species in culture and tufa gene sequences. Eur J Phycol 49:60–67

    Article  Google Scholar 

  • O’Kelly CJ, Wysor B, Bellows WK (2004) Gene sequence diversity and the phylogenetic position of algae assigned to the genera Phaeophila and Ochlochaete (Ulvophyceae, Chlorophyta). J Phycol 40:789–799

    Article  Google Scholar 

  • Oliveira EC, Paula EJ, Plastino EM, Petti R (1995) Metodologias para o cultivo axênico de macroalgas marinas in vitro. In: Alveal K, Ferrario ME, Oliveira EC, Sar E (eds) Manual de Métodos Ficológicos. Universidade de Concepción, Concepción, pp 429–455

    Google Scholar 

  • Peters AF, Couceiro L, Tsiamis K, Küpper FC, Valero M (2015) Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinestoporaceae (Ectocarpales, Phaeophyceae). Cryptogamie, Algol 36:3–29

    Article  Google Scholar 

  • Piñeiro-Corbeira C, Verbruggen H, Díaz-Tapia P (2019) Molecular survey of the red algal family Rhodomelaceae (Ceramiales, Rhodophyta) in Australia reveals new introduced species. J Appl Phycol 32:2535–2547

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2018) FigTree v1.4.2, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/. Accessed on 20 May 2020

  • Rinkel BE, Hayes P, Gueidan C, Brodie J (2012) A molecular phylogeny of Acrochaete and other endophytic green algae (Ulvales, Chlorophyta). J Phycol 48:1020–1027

    Article  PubMed  Google Scholar 

  • Santelices B, Aedo D, Hoffmann A (2002) Banks of microscopic forms and survival to darkness of propagules and microscopic stages of macroalgae. Rev Chil Hist Nat 75:547–555

    Article  Google Scholar 

  • Saunders GW, Kucera H (2010) An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie, Algol 31:487–528

    Google Scholar 

  • Saunders GW, McDevit DC (2012) Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. In: Kress WJ, Erickson DL (eds) DNA barcodes: methods and protocols, vol 858. Methods Mol Biol, pp 207–222

  • Silva AGA, Stattegger K, Schwarzer K, Vital H, Heise B (2015) The influence of climatic variations on river delta hydrodynamics and morphodynamics in the Parnaíba Delta, Brazil. J Coast Res 314:930–940

    Article  Google Scholar 

  • Soares LP, Fujii MT (2020) Molecular assessment of flat Cystocloniaceae (Gigartinales, Rhodophyta) from Brazil with reinstatement of Calliblepharis jolyi and a new record of C. saidana for the Atlantic Ocean. Phytotaxa 439:243–254

    Article  Google Scholar 

  • Soares LP, Guimarães SMPB, Fujii MT, Yoneshigue-Valentin Y, Batista MGS, Yokoya NS (2019) Thallus ontogeny, morphology and molecular phylogeny of Madagascaria atlantica sp. nov. (Compsopogonophyceae, Rhodophyta), a diminutive crustose species uncovered in the Atlantic Ocean. Aquat Bot 159:103152

    Article  Google Scholar 

  • Soares LP, Guimarães SMPB, Fujii MT, Yoneshigue-Valentin Y, Batista MGS, Yokoya NS (2020) Rhodachlya westii sp. nov. (Rhodachlyales, Rhodophyta), a new species from Brazil revealed by an integrative taxonomic approach. Phycologia 59:346–354

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583

    Article  Google Scholar 

  • Stamatakis A (2014) RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiers B (2020) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/. Accessed on 20 March 2020

  • West JA, Hansen GI, Hanyuda T, Zuccarello GC (2016) Flora of drift plastics: a new red algal genus, Tsunamia transpacifica (Stylonematophyceae) from Japanese tsunami debris in the northeast Pacific Ocean. Algae 31:289–301

    Article  Google Scholar 

  • Wynne MJ (2017) A checklist of benthic marine algae of the tropical and subtropical Western Atlantic: fourth revision. Nova Hedwigia 145:1–202

    Google Scholar 

  • Yarish C (1976) Polymorphism of selected marine Chaetophoraceae (Chlorophyta). Br Phycol J 11:29–38

    Article  Google Scholar 

  • Yokoya NS (2000) Apical callus formation and plant regeneration controlled by plant growth regulators on axenic cultures of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Phycol Res 48:133–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

NSY, MTF, and YYV thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Productivity Fellowship (312355/2019-0, 304899/2017-8, and 301938/2019-9, respectively). LPS thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Bolsista CAPES/BRASIL 88887.515974/2020-00). We thank the reviewers for their comments that improved the manuscript.

Funding

This study was partially funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/AUXPE-CIMAR 1991/2014/23038.001431/2014-75) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2016/50370-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luanda Pereira Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Sampling and field studies

All necessary permits for sampling were obtained by the authors from the competent authorities and are mentioned in the acknowledgements, when applicable.

Data availability

Data are available in herbarium SP and GenBank.

Author’s contribution

NSY, MTF, MGSB, and YYV conceived the study and collected the examined samples. SMPBG and NSY carried out the culture studies. LPS wrote the manuscript and performed the molecular analysis. LPS and SMPBG studied the morphological characters. All authors revised and approved the manuscript.

Additional information

Communicated by B. Beszteri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, L.P., Guimarães, S.M.P.B., Fujii, M.T. et al. New insights on the distribution and habitat of Ulvella endozoica (Ulvellaceae, Chlorophyta) in the tropical Southwestern Atlantic, based on thallus ontogeny in culture and DNA barcoding. Mar. Biodivers. 51, 12 (2021). https://doi.org/10.1007/s12526-020-01153-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01153-w

Keywords

Navigation