Skip to main content

Advertisement

Log in

Combining field data with infrared thermography and DInSAR surveys to evaluate the activity of landslides: the case study of Randazzo Landslide (NE Sicily)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Infrared thermography and DInSAR surveying methodologies have been integrated and compared to study the state and distribution of activity of one of the largest landslides of northeastern Sicily, Italy, which is characterized by a slow retrogressive evolution. The Randazzo Landslide was triggered by heavy rainfalls in 1996 and its activity caused the disruption of a strategic transportation corridor, along with the formation of a landslide dam in the Alcantara Valley. After more than 20 years, the slope is still affected by instability and worrying signs of reactivations (e.g., deformation and cracking of road pavement) were surveyed in the field. The application of infrared thermography during the landslide survey allowed detecting peculiar features according to the different thermal pattern of the elements occurring along the slope. In particular, areas with different surface temperature were associated to vegetated spots, steep portions, bare sectors, and contact between different lithologies. Incipient portions and ancient landslide bodies were located, proving the utility of this experimental approach to the surveying of unstable slopes. Information on the entity, in terms of velocity, of the recent landslide displacements were provided by a DInSAR monitoring, which allowed ascertaining the presence of movements affecting several sectors of the landslide, mainly matching with the areas highlighted by thermal images. Achieved outcomes represent a scientifically relevant datum providing important information on the surveyed landslide from the risk management point of view and proving the utility of integrating infrared thermography and DInSAR methodologies for the study of complex movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ammer K (2016) Thermography 2015—a computer-assisted literature survey. Thermology international 26(1):5–42

    Google Scholar 

  • Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse problems 14(4):R1

    Article  Google Scholar 

  • Bardi F, Frodella W, Ciampalini A, Bianchini S, Del Ventisette C, Gigli G, Fanti R, Moretti S, Basile G, Casagli N (2014) Integration between ground based and satellite SAR data in landslide mapping: the San Fratello case study. Geomorphology 223:45–60

    Article  Google Scholar 

  • Baroň I, Bečkovský D, Míča L (2014) Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 11:15–27. https://doi.org/10.1007/s10346-012-0367-z

    Article  Google Scholar 

  • Basile G, Ferrara V, Pappalardo G (1996) Mechanisms and evolutive phases of Randazzo Landslide in the high Alcantara Valley (in Italian). Prevention of Hydrogeological hazard: the role of scientific research, GNDCI-CNR 1:125–135

  • Ben-Avraham Z, Boccaletti M, Cello G, Grasso M, Lentini F, Torelli L, Tortorici L (1990) Main structural domains originated by the continental neogenic-quaternary collision in central Mediterranean (in Italian). Mem Soc Geol Ital 45:453–462

    Google Scholar 

  • Bonì R, Meisina C, Cigna F, Herrera G, Notti D, Bricker S, McCormack H, Tomás R, Béjar-Pizarro M, Mulas J, Ezquerro P (2017) Exploitation of satellite A-DInSAR time series for detection, characterization and modelling of land subsidence. Geosciences (Switzerland) 7(2)

    Article  Google Scholar 

  • Borgatti L, Corsini A, Barbieri M, Sartini G, Truffelli G, Caputo G, Puglisi C (2006) Large reactivated landslides in weak rock masses: a case study from the Northern Apennines (Italy). Landslides 3:115–124. https://doi.org/10.1007/s10346-005-0033-9

    Article  Google Scholar 

  • Bouali EH, Oommen T, Escobar-Wolf R (2017) Mapping of slow landslides on the Palos Verdes Peninsula using the California landslide inventory and persistent scatterer interferometry. Landslides:1–14

  • Bovenga F, Pasquariello G, Pellicani R, Refice A, Spilotro G (2017) Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: the large landslide of Carlantino (Italy). Catena 151:49–62. https://doi.org/10.1016/j.catena.2016.12.006

    Article  Google Scholar 

  • Branca S (2003) Geological and geomorphological evolution of the Etna volcano NE flank and relationships between lava flow invasions and erosional processes in the Alcantara Valley (Italy). Geomorphology 53:247–261

    Article  Google Scholar 

  • Carbone F, Coletta A, De Luca GF, Del Frate F, Fasano L, Schiavon G (2016) Automatic generation of frequently updated land cover products at national level using COSMO-SkyMed SAR imagery. In: Geoscience and Remote Sensing Symposium (IGARSS). IEEE International 3406–3409

  • Carey JM, Moore R, Petley DN (2015) Patterns of movement in the Ventnor landslide complex, Isle of Wight, southern England. Landslides 12:1107–1118. https://doi.org/10.1007/s10346-014-0538-1

    Article  Google Scholar 

  • Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenvironmental Disasters 4:9

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10(3):267–283

    Article  Google Scholar 

  • Confuorto P, Di Martire D, Centolanza G, Iglesias R, Mallorqui JJ, Novellino A, Plank S, Ramondini M, Thuro K, Calcaterra D (2017) Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sens Environ 188:51–72

    Article  Google Scholar 

  • Costantini M, Falco S, Malvarosa F, Minati F (2008) A new method for identification and analysis of persistent scatterers in series of SAR images. In: IGARSS 2008–2008 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, Pp. II-449)

  • Costantini M, Ferretti A, Minati F, Falco S, Trillo F, Colombo D, Novali F, Malvarosa F, Mammone F, Vecchioli F, Rucci A, Fumagalli A, Allievi J, Ciminelli M, Costabile S (2017) Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens Environ. https://doi.org/10.1016/j.rse.2017.07.017G

  • Cruden DM (1993) The multilingual landslide glossary. Bitech Publishers, Richmond

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides Investigation and Mitigation special report 247, Transportation Research Board, National Research Council, pp 36–75

  • Cubito A, Ferrara V, Pappalardo G (2005) Landslide hazard in the Nebrodi Mountains (Northeastern Sicily). Geomorphology 66:359–372

    Article  Google Scholar 

  • Dai K, Li Z, Tomàs R, Liu G, Yu B, Wang X, Cheng H, Chen J, Stockamp J (2016) Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens Environ 186:501–513

    Article  Google Scholar 

  • Del Ventisette C, Righini G, Moretti S, Casagli N (2014) Multitemporal landslides inventory map updating using spaceborne SAR analysis. Int J Appl Earth Obs Geoinf 30:238–246

    Article  Google Scholar 

  • Dewitte O, Chung CJ, Demoulin A (2006) Reactivation hazard mapping for ancient landslides in West Belgium. Nat Hazards Earth Syst Sci 6:653–662

    Article  Google Scholar 

  • Di Maio C, Vassallo R, Vallario M, Pascale S, Sdao F (2010) Structure and kinematics of a landslide in a com-plex clayey formation of the Italian Southern Apennines. Eng Geol 116(3):311–322

    Article  Google Scholar 

  • Di Martire D, Novellino A, Ramondini M, Calcaterra D (2016a) A-differential synthetic aperture radar interferometry analysis of a deep seated gravitational slope deformation occurring at Bisaccia (Italy). Sci Total Environ 550:556–573. https://doi.org/10.1016/j.scitotenv.2016.01.102

    Article  Google Scholar 

  • Di Martire D, Tessitore S, Brancato D, Ciminelli MG, Costabile S, Costantini M, Graziano GV, Minati F, Ramondini M, Calcaterra D (2016b) Landslide detection integrated system (LaDIS) based on in-situ and satellite SAR interferometry measurements. Catena 137:406–421

    Article  Google Scholar 

  • Di Martire D, Paci M, Confuorto P, Costabile S, Guastaferro F, Verta A, Calcaterra D (2017) A nation-wide system for landslide mapping and risk management in Italy: the second not-ordinary plan of environmental remote sensing. Int J Appl Earth Obs Geoinf 63:143–157 ISSN 0303-2434

    Article  Google Scholar 

  • Donnini M, Napolitano E, Salvati P, Ardizzone F, Bucci F, Fiorucci F, Santangelo M, Cardinali M, Guzzetti F (2017) Impact of event landslides on road networks: a statistical analysis of two Italian case studies. Landslides 14:1521–1535. https://doi.org/10.1007/s10346-017-0829-4

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20

    Article  Google Scholar 

  • Fiaschi S, Tessitore S, Bonì R, Di Martire D, Achilli V, Borgstrom S, Ibrahim A, Floris M, Meisina C, Ramondini M, Calcaterra D (2017) From ERS-1/2 to Sentinel-1: two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GIsci Remote Sens. https://doi.org/10.1080/15481603.2016.1269404

    Article  Google Scholar 

  • Fielding EJ, Sangha SS, Bekaert DPS, Samsonov SV, Chang JC (2017) Surface deformation of North-Central Oklahoma related to the 2016 Mw 5.8 Pawnee earthquake from SAR interferometry time series. Seismol Res Lett 88(4):971–982

    Article  Google Scholar 

  • FLIR (2014) User’s manual, Publ. No.: T559795 in English

  • Frodella W, Ciampalini A, Gigli G, Lombardi L, Raspini F, Nocentini M, Scardigli C, Casagli N (2016) Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 264:80–94

    Article  Google Scholar 

  • Frodella W, Ciampalini A, Bardi F, Salvatici T, Di Traglia F, Basile G, Casagli N (2017a) A method for assessing and managing landslide residual hazard in urban areas. Landslides:1–15

  • Frodella W, Gigli G, Morelli S, Lombardi L, Casagli N (2017b) Landslide mapping and characterization through infrared thermography (IRT): suggestions for a methodological approach from some case studies. Remote Sens 9(12):1281

    Article  Google Scholar 

  • Frodella W, Morelli S, Pazzi V (2017c) infrared thermographic surveys for landslide mapping and characterization: the Rotolon DSGSD (northern Italy) case study. Italian Journal of Engineering Geology and Environment, Special Issue 1 (2017): 77–84

  • Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas: differential interferometry. J Geophys Res 94:9183–9191

    Article  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic Press, New York 771 pp

    Google Scholar 

  • Hudson RD (1969) Infrared system engineering. Wiley- Interscience, New York 642 pp

    Google Scholar 

  • Infante D, Confuorto P, Di Martire D, Ramondini M, Calcaterra D (2016) Use of DInSAR data for multi-level vulnerability assessment of urban settings affected by slow-moving and intermittent landslides. Procedia Engineering 158:470–475

    Article  Google Scholar 

  • Klimes J, Baron I, Panek T, Kosacik T, Burda J, Kresta F, Hradecky J (2009) Investigation of recent catastrophic landslides in the flysch belt of outer western Carpathians (Czech Republic): progress towards better hazard assessment. Nat Hazards Earth Syst Sci 9:119–128

    Article  Google Scholar 

  • Klose M, Damm B, Terhorstet B (2015) Landslide cost modeling for transportation infrastructures: a methodological approach. Landslides 12:321–334. https://doi.org/10.1007/s10346-014-0481-1

    Article  Google Scholar 

  • Lazecky M, Canaslan Comut F, Nikolaeva E, Bakon M, Papco J, Ruiz-Armenteros AM, Qin Y, De Sousa JJM, Ondrejka P (2016) Potential of sentinel-1A for nation-wide routine updates of active landslide maps. Int Arch Photogramm Remote Sens Spat Inf Sci 41:775–781

    Article  Google Scholar 

  • Lentini F, Carbone S, Catalano S (1994) Main structural domains of the central Mediterranean region and their Neogene tectonic evolution. Boll Geofis Teor Appl XXXVI:141–144

    Google Scholar 

  • Liu S, Xu Z, Wu L, Ma B, Liu X (2011) Infrared imaging detection of hidden dander in mine engineering. Proc. of Symp. on Progress in electromagnetics research, Suzhou, China, Sept 12-16, 125–129

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K (1993) The displacement field of the landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  • Meola C, Carlomagno GM (2004) Recent advances in the use of infrared thermography. Meas Sci Technol 15:27–58

    Article  Google Scholar 

  • Mineo S, Pappalardo G (2016a) The use of infrared thermography for porosity assessment of intact rock. Rock Mech Rock Eng 49(8):3027–3039. https://doi.org/10.1007/s00603-016-0992-2

    Article  Google Scholar 

  • Mineo S, Pappalardo G (2016b) Preliminary results on the estimation of porosity in intact rock through InfraRed thermography. Rend Online Soc Geol Ital 41:317–320. https://doi.org/10.3301/ROL.2016.157

    Article  Google Scholar 

  • Mineo S, Pappalardo G, Rapisarda F, Cubito A, Di Maria G (2015a) Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng Geol 195:225–235. https://doi.org/10.1016/j.enggeo.2015.06.010

    Article  Google Scholar 

  • Mineo S, Calcaterra D, Perriello Zampelli S, Pappalardo G (2015b) Application of infrared thermography for the survey of intensely jointed rock slopes. Rend Online Soc Geol Ital 35:212–215. https://doi.org/10.3301/ROL.2015.103

    Article  Google Scholar 

  • Mineo S, Pappalardo G, D’Urso A, Calcaterra D (2017) Event tree analysis for rockfall risk assessment along a strategic mountainous transportation route. Environ Earth Sci 76:620. https://doi.org/10.1007/s12665-017-6958-1

    Article  Google Scholar 

  • Mineo S, Pappalardo G, Mangiameli M, Campolo S, Mussumeci G (2018) Rockfall analysis for preliminary hazard assessment of the cliff of Taormina Saracen Castle (Sicily). Sustainability 10(2):417. https://doi.org/10.3390/su10020417

    Article  Google Scholar 

  • Morello R (2017) Potentialities and limitations of thermography to assess landslide risk. Measurement. https://doi.org/10.1016/j.measurement.2017.11.045

    Article  Google Scholar 

  • Novellino A, Cigna F, Sowter A, Syafiudin MF, Di Martire D, Ramondini M, Calcaterra D (2015) Intermittent small baseline subset (ISBAS) InSAR analysis to monitor landslides in Costa della Gaveta, Southern Italy. IEEE International Geoscience and Remote Sens Symposium, IGARSS 2015; Milan; Italy; 26 July 2015 through 31 July 2015, Volume 2015: 3536–3539

  • Novellino A, Cigna F, Sowter A, Ramondini M, Calcaterra D (2017) Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy. Geomorphology 280:153–166

    Article  Google Scholar 

  • Olivares L, Damiano E, Greco R, Zeni L, Picarelli L, Minardo A, Guida A, Bernini R (2009) An instrumented flume to investigate the mechanics of rainfall-induced landslides in unsaturated granular soils. Geotech Test J 32(2):1–11

    Google Scholar 

  • Panek T, Smolkova V, Hradecky J, Kirchner K (2007) Landslide dams in the northern part of Czech Flysch Carpathians: geomorphic evidence and imprints. Studia Geomorphologica Carpatho-Balcanica – Landform evolution in mountain areas, XLI: 77–96

  • Pappalardo, G. (2018) First results of infrared thermography applied to the evaluation of hydraulic conductivity in rock masses. Hydrogeol J 2017, 1–12

  • Pappalardo G, Mineo S (2017) Investigation on the mechanical attitude of basaltic rocks from Mount Etna through InfraRed thermography and laboratory tests. Constr Build Mater 134:228–235. https://doi.org/10.1016/j.conbuildmat.2016.12.146

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Marchese G (2013) Effects of cubical specimen sizing on uniaxial compressive strength of Etna volcanic rocks (Italy). Ital J Eng Geol Environ 2:5–14. https://doi.org/10.4408/IJEGE.2013-02.O-03

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Rapisarda F (2014) Rockfall hazard assessment along a road on the Peloritani Mountains (northeastern Sicily, Italy). Nat Hazards Earth Syst Sci 14:2735–2748. https://doi.org/10.5194/nhess-14-2735-2014

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Perriello Zampelli S, Cubito A, Calcaterra D (2016) InfraRed thermography proposed for the estimation of the cooling rate index in the remote survey of rock masses. Int J Rock Mech Min Sci 83:182–196. https://doi.org/10.1016/j.ijrmms.2016.01.010

    Article  Google Scholar 

  • Pappalardo G, Punturo R, Mineo S, Contrafatto L (2017a) The role of porosity on the engineering geological properties of 1669 lavas from Mount Etna. Eng Geol 16-28(2017):221. https://doi.org/10.1016/j.enggeo.2017.02.020

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Calcaterra D (2017b) Geomechanical Analysis Of Unstable Rock Wedges By Means Of Geostructural And Infrared Thermography Surveys. Italian Journal of Engineering Geology and Environment, Special Issue 2017:93–101. https://doi.org/10.4408/IJEGE.2017-01.S-09

    Article  Google Scholar 

  • Pappalardo G, Imposa S, Barbano MS, Grassi S, Mineo S (2018) Study of landslides at the archaeological site of Abakainon necropolis (NE Sicily) by geomorphological and geophysical investigations. Landslides. https://doi.org/10.1007/s10346-018-0951-y

    Article  Google Scholar 

  • Peltzer G, Rosen PA (1995) Surface displacement of the 17 Eureka Valley, California, earthquake observed by SAR interferometry. Science 268:1333–1336

    Article  Google Scholar 

  • Rees WG (2001) Physical principles of remote sensing. Cambridge University Press, p 343

  • Reichenbach P, Ardizzone F, Cardinali M, Galli M, Guzzetti F, Carrara A (2005) Validation of a landslide susceptibility model using event inventory maps. Geophys Res Abstr 7

  • Rinker JN (1975) Airborne infrared thermal detection of caves and crevasses. Photogramm Eng Remote Sens 41:1391–1400

    Google Scholar 

  • Rizo V, Tesauro M (2000) SAR interferometry and field data of Randazzo Landslide (Eastern Sicily, Italy). Phys Chem Earth Part (B) 25(9):771–780

    Article  Google Scholar 

  • Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein R (2000) Synthetic aperture radar interferometry. IEEE Proc 88:333–376

    Article  Google Scholar 

  • Rosi A, Tofani V, Tanteri L, Tacconi Stefanelli C, Agostini A, Catani F, Casagli N (2017) The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: geomorphological features and landslide distribution. Landslides:1–15

  • Sacco P, Battagliere M L, Daraio MG, Coletta A (2015) The COSMO-SkyMed constellation monitoring of the Italian territory: the Map Italy project. In Proc. of 66th international Astronautical Congress (IAC 2015): 12–16

  • Salzer J, Milillo P, Varley N, Perissin D, Pantaleo M, Walter T (2017) Evaluating links between deformation, topography and surface temperature at volcanic domes: results from a multi-sensor study at Volcn de Colima, Mexico. Earth Planet Sci Lett 479:354–365

    Article  Google Scholar 

  • Shannon HR, Sigda JM, Van Dam RL, Handrickx JMH, McLemore VT (2005) Thermal camera imaging of rock piles at the Questa Molybdenum Mine, Questa, New Mexico. Proc. 2005 National Meeting of the American Society of Mining and Reclamation, June 19–23, ASMR: 1015–1028

    Article  Google Scholar 

  • Squarzoni C, Galgaro A, Teza G, Acosta CAT, Pernito MA, Bucceri N (2008) Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophysical Research Abstracts, Vol. 10, EGU2008-A-09254

  • Stramondo S, Trasatti E, Albano M, Moro M, Chini M, Bignami C, Polcari M, Saroli M (2016) Uncovering deformation processes from surface displacements. J Geodyn 102:58–82

    Article  Google Scholar 

  • Teza G, Marcato G, Pasuto A, Galgaro A (2015) Integration of laser scanning and thermal imaging in monitoring optimization and assessment of rockfall hazard: a case history in the Carnic Alps (Northeastern Italy). Nat Hazards 76:1535–1549. https://doi.org/10.1007/s11069-014-1545-1

    Article  Google Scholar 

  • Tomás R, Li Z, Lopez-Sanchez JM, Liu P, Singleton A (2016) Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides 13(3):437–450

    Article  Google Scholar 

  • Tomás R, Abellán A, Cano M, Riquelme A, Tenza-Abril AJ, Baeza-Brotons F, Saval JM, Jaboyedoff M (2017) A multidisciplinary approach for the investigation of a rock spreading on an urban slope. Landslides:1–19

  • USGS (2004) Landslide types and processes. Fact Sheet 2004-3072 July 2004, U.S. Department of the Interior U.S. Geological Survey

  • Uzielli M, Catani F, Tofani V, Casagli N (2015) Risk analysis for the Ancona landslide—I: characterization of landslide kinematics. Landslides 12:69–82. https://doi.org/10.1007/s10346-014-0474-0

    Article  Google Scholar 

  • Wasowski J, Bovenga F (2014) Investigating landslides and unstable slopes with satellite multi temporal interferometry: current issues and future perspectives. Eng Geol 174:103–138. https://doi.org/10.1016/j.enggeo.2014.03.003

    Article  Google Scholar 

  • Wu JH, Lin HM, Lee DH, Fang SC (2005) Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng Geol 80:164–173

    Article  Google Scholar 

  • Zhang S, Zhang LM (2014) Human vulnerability to quick shallow landslides along road: fleeing process and modeling. Landslides 11:1115–1129. https://doi.org/10.1007/s10346-014-0468-y

    Article  Google Scholar 

Download references

Acknowledgements

This paper was carried out of in the framework of the scientific agreement between the Department of Biological, Geological and Environmental Sciences—University of Catania and the Department of Earth, Environment and Resources Sciences–University of Naples Federico II for the study of landslides in the Appennine-Maghrebian Orogen. Laboratory tests were carried out at the Laboratory of Applied Geology of the previously mentioned department of University of Catania, scientific responsible Giovanna Pappalardo.

Many thanks are due to Ministry of Environment, who promoted and supported the realization of the PST-A, to the Editor and the anonymous reviewers, who contributed to improve the quality of this article.

Funding

The research was financially supported by “Piano Triennale della Ricerca (2017-2020)” (University of Catania, Department of Biological, Geological and Environmental Sciences), scientific responsible Giovanna Pappalardo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mineo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pappalardo, G., Mineo, S., Angrisani, A.C. et al. Combining field data with infrared thermography and DInSAR surveys to evaluate the activity of landslides: the case study of Randazzo Landslide (NE Sicily). Landslides 15, 2173–2193 (2018). https://doi.org/10.1007/s10346-018-1026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-018-1026-9

Keywords

Navigation