Skip to main content
Log in

Event tree analysis for rockfall risk assessment along a strategic mountainous transportation route

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

A quantitative risk analysis has been performed in a tourist area of Sicily (Italy) with the aim of assessing the rockfall risk along an important transportation corridor, crossing a geologically complex area and poor rock masses. The procedure followed herein is based on an event tree analysis, which was properly customized to take into account the peculiarity of the area and of the road path. Rock mass surveys, trajectory simulations and probabilistic models are proposed with the aim of calculating the probability related to possible scenarios in case of rockfalls. Achieved outcomes demonstrate that such procedure, resulting from a multifaceted study, is a reliable tool, which can be taken as reference to calibrate further risk models in comparable contexts of the world, where rockfall threaten communication routes. This would represent a helpful instrument to the scientific community and to local authorities dealing with one of the most troublesome natural phenomena affecting the public safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bacilieri C (2012) I borghi più belli d’Italia, Il fascino dell’Italia nascosta. Società Editrice Romana, Rome

    Google Scholar 

  • Ball D, Watt J (2001) Risk management and cultural presentation. In: Proceedings of the ARIADNE workshop 4, vulnerability of cultural heritage to hazards and prevention measures, Prague, 18–24 Aug

  • Barbano MS, Pappalardo G, Pirrotta C, Mineo S (2014) Landslide triggers along volcanic rock slopes in eastern Sicily (Italy). Nat Hazards 73(3):1587–1607. doi:10.1007/s11069-014-1160-1

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classification. Wiley, New York, p 251

    Google Scholar 

  • Budetta P (2004) Assessment of rockfall risk along roads. Nat Hazards Earth Syst Sci 4:71–81. doi:10.5194/nhess-4-71-2004

    Article  Google Scholar 

  • Budetta P, De Luca C, Nappi M (2016) Quantitative rockfall risk assessment for an important road by means of the rockfall risk management (RO.MA.) method. Bull Eng Geol Environ 75:1377–1397. doi:10.1007/s10064-015-0798-6

    Article  Google Scholar 

  • Bunce CM, Cruden DM, Morgenstern NR (1997) Assessment of the hazard from rockfall on a highway. Can Geotech J 34:344–356

    Article  Google Scholar 

  • Calcaterra D, Parise M (2010) Weathering as a predisposing factor to slope movements: an introduction. Geol Soc Eng Geol Spec Publ 23:1–4

    Google Scholar 

  • CNR- Consiglio Nazionale delle Ricerche (1980) Norme tecniche per le costruzioni stradali. Pon 1V 11–15

  • Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422. doi:10.5194/nhess-3-407-2003

    Article  Google Scholar 

  • De Biagi V, Botto A, Napoli M, Dimasi C, Laio F, Peila D, Barbero M (2016) Calcolo del tempo di ritorno dei crolli in roccia in funzione della volumetria. GEAM Geoingegneria Ambientale e Mineraria LIII 39–48:2016

    Google Scholar 

  • De Biagi V, Napoli ML, Barberio M, Peila D (2017) Estimation of the return period of rockfall blocks according to their size. Nat Hazards Earth Syst Sci 17:103–113

    Article  Google Scholar 

  • De Guidi G, Imposa S, Scudero S, Palano M (2014) New evidence for late quaternary deformation of the substratum of Mt. Etna volcano (Sicily, Italy): clues indicate active crustal doming. Bull Volcanol 76:816

    Article  Google Scholar 

  • Duncan CW, Norman IN (1996) Stabilization of rock slopes. Landslides investigations and mitigation, special report 247, Transportation Research Board, National Research Council, Washington, pp 474–506

  • Evans SG, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Ferrara V, Pappalardo G (2005) Kinematic analysis of rock falls in an urban area: the case of Castelmola hill near Taormina (Sicily, Italy). Geomorphology 66:373–383

    Article  Google Scholar 

  • Ferrari P, Giannini F (1975) Geometria e progetto di strade- Ingegneria stradale. ISEDI 1:344

    Google Scholar 

  • Frattini P, Crosta GB, Allievi J (2013) Damage to buildings in large slope rock instabilities monitored with the PSInSAR™ technique. Remote Sens 5(10):4753–4773. doi:10.3390/rs5104753

    Article  Google Scholar 

  • Geostru (2013) Georock 3D user manual

  • Giani GP (1992) Rock slope stability analysis. A. A. Balkema, Rotterdam

    Google Scholar 

  • Guzzetti F, Reichenbach P (2010) Rockfalls and their hazard. In: Stoffel M et al (eds) Tree rings and natural hazards. Springer, Berlin, pp 129–137

    Chapter  Google Scholar 

  • His JP, Fell R (2005) Landslide risk assessment of coal refuse emplacement. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Balkema, Rotterdam, pp 224–238

    Google Scholar 

  • Ho K, Ko F (2009) Application of quantified risk analysis in landslide risk management practice: Hong Kong experience. Georisk: assessment and management of risk for engineered systems and geohazards, vol 3, Geotechnical safety and risk: Part 1 (Geotechnical risk). doi:10.1080/17499510902873074g

  • Hoek E (1987) Rockfall—a program in basic for the analysis of rockfalls from slopes. Department of Civil engineering, University of Toronto, Toronto

    Google Scholar 

  • Hoek E (2000) Practical rock engineering, pp 115–136. www.rocscience.com. Last access 16 Sept 2008

  • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods, international society for rock mechanics, compilation arranged by the ISRM Turkish National Group. Ankara, Kozan Ofset, p 628

    Google Scholar 

  • La Sicilia (2012) Catania, 27 Feb, yr LXVIII, n. 57

  • Lacasse S, Nadim F (2008) Landslide risk assessment and mitigation strategy. Invited Lecture, state-of-the-art. First World Landslide Forum, Global Landslide Risk Reduction, International Consortium of Landslides, Tokyo, pp 31–61

  • Lambert S, Nicot F (2011) Rockfall engineering. ISTE Ltd and Wiley Inc, Hoboken

    Google Scholar 

  • Lee EM, Jones DKC (2014) Landslide risk assessment, 2nd edn. ICE Publishing, London, p 509

    Google Scholar 

  • Lee EM, Moore R (2007) Ventnor Undercliff: development of landslide scenarios and quantitative risk assessment. In: Proceedings of the international conference landslides and climate change—challenges and solutions, Taylor & Francis, Ventnor, May 2007

  • Lentini F, Carbone S, Guarnieri P (2006) Collisional and postcollisional tectonics of the Apenninic-Maghrebian orogen (southern Italy), Geological Society of America Special Paper 409. Geological Society of America, Boulder, pp 57–81

    Google Scholar 

  • Macciotta R, Martin CD, Morgenstern NR, Cruden DM (2016) Quantitative risk assessment of slope hazards along a section of railway in the Canadian Cordillera—a methodology considering the uncertainty in the results. Landslides 13(1):115–127. doi:10.1007/s1034601405514

    Article  Google Scholar 

  • Macciotta R, Martin CD, Cruden DM, Hendry M, Edwards T (2017) Rock fall hazard control along a section of railway based on quantified risk. Georisk. doi:10.1080/17499518.2017.1293273

    Google Scholar 

  • Mateos RM, Garcia-Moreno I, Herrera G, Reichenbach P, Sarro R, Rius J, Aguilo R, Fiorucci F (2016) Calibration and validation of rockfall modelling at regional scale: application along a roadway in Mallorca (Spain) and organization of its management. Landslides 13(4):751–763

    Article  Google Scholar 

  • Mignelli C, Lo Russo S, Peila D (2012) ROckfall risk MAnagement assessment: the RO.MA. approach. Nat Hazards 62:1109–1123. doi:10.1007/s11069-012-0137-1

    Article  Google Scholar 

  • Mignelli C, Pomarico S, Peila D (2013) Use of multi-criteria model to compare devices for the protection of roads against rockfall. Environ Eng Geosci XIX(3):289–302 (ISSN 10787275)

    Article  Google Scholar 

  • Mignelli C, Peila D, Lo Russo S, Ratto SM, Broccolato M (2014) Analysis of rockfall risk on mountainside roads: evaluation of the effect of protection devices. Nat Hazards 73:23–35. doi:10.1007/s11069-013-0737-4

    Article  Google Scholar 

  • Mineo S, Pappalardo G, Rapisarda F, Cubito A, Di Maria G (2015a) Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng Geol 195:225–235. doi:10.1016/j.enggeo.2015.06.010

    Article  Google Scholar 

  • Mineo S, Calcaterra D, Perriello Zampelli S, Pappalardo G (2015b) Application of infrared thermography for the survey of intensely jointed rock slopes. Rend Online Soc Geol Ital 35:212–215. doi:10.3301/ROL.2015.103

    Google Scholar 

  • Pappalardo G, Mineo S (2015) Rockfall hazard and risk assessment: the promontory of the pre-hellenic village Castelmola Case, North-Eastern Sicily (Italy). In: Lollino G et al (eds), Engineering geology for society and territory, vol 2, Springer, Switzerland, pp. 1989–1993. doi: 10.1007/978-3-319-09057-3_353

  • Pappalardo G, Mineo S, Rapisarda F (2014) Rockfall hazard assessment along a road on the Peloritani Mountains (northeastern Sicily, Italy). Nat Hazards Earth Syst Sci 14:2735–2748. doi:10.5194/nhess-14-2735-2014

    Article  Google Scholar 

  • Pappalardo G, Imposa S, Mineo S, Grassi S (2016a) Evaluation of the stability of a rock cliff by means of geophysical and geomechanical surveys in a cultural heritage site (south-eastern Sicily). Ital J Geosci 135(2):308–323. doi:10.3301/IJG.2015.31

    Article  Google Scholar 

  • Pappalardo G, Mineo S, Perriello Zampelli S, Cubito A, Calcaterra D (2016b) InfraRed thermography proposed for the estimation of the cooling rate index in the remote survey of rock masses. Int J Rock Mech Min Sci 83:182–196. doi:10.1016/j.ijrmms.2016.01.010

    Google Scholar 

  • Peila D, Guardini C (2008) Use of the event tree to assess the risk reduction obtained from rockfall protection devices. Nat Hazards Earth Syst Sci 8:1441–1450

    Article  Google Scholar 

  • Pfeiffer TJ, Bowen TD (1989) Computer simulation of rockfalls. Bull Assoc Eng Geol 26:135–146

    Google Scholar 

  • Perriello Zampelli S, De Vita P, Imbriaco D, Calcaterra D (2015) Failure mechanisms of the Mount Catiello rock Avalanche in the Sorrento-Amalfi Peninsula (Southern Italy). In Lollino G et al (eds), Engineering geology for society and territory, vol 2, Springer, Switzerland, pp 813–816

  • Pierson LA, Davis SA, Van Vickle R (1990) Rockfall hazard rating system—implementation manual, Federal Highway Administration (FHWA), Report FHWAOR- EG-90–01, FHWA, US Department of Transportation

  • Ruiz-Carulla R, Corominas J, Mavrouli O (2015) A methodology to obtain the block size distribution of fragmental rockfall deposits. Landslides 12:815–825

    Article  Google Scholar 

  • Sarro R, Mateos RM, García-Moreno I, Herrera G, Reichenbach P, Laín L, Paredes C (2014) The Son Poc rockfall (Mallorca, Spain) on the 6th of March 2013: 3D simulation. Landslides 11:493–503

    Article  Google Scholar 

  • Schober A, Bannwart C, Keushnig M (2012) Rockfall modeling in high alpine terrain-validation and limitations. Geomech Tunn 5(4):368–378

    Article  Google Scholar 

  • UNESCO (2010) Risk management training handbook, BSP-2010/WS7

  • Yin Y, Sun P, Zhang M, Li B (2011) Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China. Landslides 8(1):49–65

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to Prof. D.M. Cruden and R. Macciotta Ph.D. for having provided some of their research papers, which represented a great contribution to this article. Thanks are also extended to the editor and the two anonymous reviewers who handled this paper during the reviewing process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pappalardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineo, S., Pappalardo, G., D’Urso, A. et al. Event tree analysis for rockfall risk assessment along a strategic mountainous transportation route. Environ Earth Sci 76, 620 (2017). https://doi.org/10.1007/s12665-017-6958-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6958-1

Keywords

Navigation