Skip to main content
Log in

Biogeochemistry of selenium. A review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Selenium levels and speciation in environmental compartments and the dynamics of global Se cycling continue to be a subject of intense interest largely because Se is both an essential element and a toxicant at elevated levels. While Se containing amino acids and proteins are known to be critical for normal metabolic functions in many life forms, selenosis, poisoning due to chronic excessive Se intake, has been associated with neurological impairment. This paper reviews the current understanding of the biogeochemistry of selenium in the natural environment. The factors that affect Se speciation in natural environments are chemical, physical, and biological processes. Several inorganic species of Se (−2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. Both HSeO3 and SeO3 2− would be present in natural waters. Under mild oxidizing conditions, HSeO3 and SeO3 2− are the major species, while HSe would be the dominant species at pH greater than 4 and strong reducing conditions. The biogeochemistry of selenium is discussed in terms of variation of speciation with pH and redox conditions, sorption on solid surfaces, role of reducing species under oxic/anoxic conditions, and interaction with natural organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams MM, Burau RG, Zasoski RJ (1990) Organic selenium distribution in selected California soils. Soil Sci Soc Am J 54:979–982

    Article  CAS  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Blackie, London

    Google Scholar 

  • Balistrieri LS, Chao TT (1987) Seleniun adsorption by geothite. Soil Sci Soc Am J 51:1145–1151

    Article  CAS  Google Scholar 

  • Beckett R, Ranville J (2006) Chapter 17: Natural organic matter. In: Newcombe G, Dixon D (eds) Interface science in drinking water treatment, vol 10, pp 299–315

  • Bierla K, Szpunar J, Yiannikouris A, Lobinski R (2012) Comprehensive speciation of selenium in selenium-rich yeast. TrAC Trends Anal Chem 41:122–132

    Article  CAS  Google Scholar 

  • Bruggeman C, Maes A, Vancluysen J (2007) The interaction of dissolved Boom Clay and Gorleben humic substances with selenium oxyanions (selenite and selenate). Appl Geochem 22:1371–1379

    Article  CAS  Google Scholar 

  • Buchs B, Evangelou MWH, Winkel LHE, Lenz M (2013) Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness. Environ Sci Technol 47:2401–2407

    Article  CAS  Google Scholar 

  • Charter RA, Tabatabai MA, Schafer JW (1995) Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks. Commun Soil Sci Plant Anal 26:3051–3062

    Article  CAS  Google Scholar 

  • Chen Y, Zhou X, Tong J, Truong Y, Belzile N (2005) Photochemical behavior of inorganic and organic selenium compounds in various aqueous solutions. Anal Chim Acta 545:149–157

    Article  CAS  Google Scholar 

  • Chinn R, Barrett S (1999) Occurrence of amino acids in drinking water sources. Book of Abstracts, ACS Nat Meeting 217

    Google Scholar 

  • Chipinda I, Zhang XD, Simoyi RH, Siegel PD (2008) Mercaptobenzothiazole allergenicity-role of the thiol group. Cutan Ocul Toxicol 27:103–116

    Article  CAS  Google Scholar 

  • Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85:517–547

    Article  CAS  Google Scholar 

  • Cooke TD, Bruland KW (1987) Aquatic chemistry of selenium: evidence of biomethylation 1. Environ Sci Technol 21:1214–1219

    Article  Google Scholar 

  • Crea P, De Stefano C, Millero FJ, Sammartano S, Sharma VK (2010) Dissociation constants of protonated oxidized glutathione in seawater media at different salinities. Aquat Geochem 16:447–466

    Article  CAS  Google Scholar 

  • Cutter GA, Cutter LS (1995) Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean. Mar Chem 49:295–306

    Article  CAS  Google Scholar 

  • Cutter GA, Cutter LS (2004) Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior. Estuar Coast Shelf Sci 61:463–476

    Article  CAS  Google Scholar 

  • Dauphas N (2013) Sulphur from heaven and hell. Nature 501:175–176

    Article  CAS  Google Scholar 

  • Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323

    Article  CAS  Google Scholar 

  • Emmanuelle B, Virginie M, Fabienne S, Isabelle I, Martine P-, Bernard L, Sylvie R (2012) Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey. Environ Int 40:155–161

    Article  CAS  Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  Google Scholar 

  • Fitch A, Stevenson FJ (1984) Comparison of models for determining stability constants of metal complexes with humic substances. Soil Sci Soc Am J 48:1044–1050

    Article  CAS  Google Scholar 

  • Floor GH, Román-Ross G (2012) Selenium in volcanic environments: a review. Appl Geochem 27:517–531

    Article  CAS  Google Scholar 

  • Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94–97

    Article  CAS  Google Scholar 

  • Gennari F, Sharma VK, Pettine M, Campanella L, Millero FJ (2014) Reduction of selenite by cysteine in ionic media. Geochim Cosmochim Acta 124:98–108

    Article  CAS  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil-selenium. Soil Sci Soc Am J 52:954–958

    Article  CAS  Google Scholar 

  • Guo X, Sturgeon RE, Mester Z, Gardner GJ (2003) Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids. Environ Sci Technol 37:5645–5650

    Article  CAS  Google Scholar 

  • Gustafsson JP, Johnsson L (1992) Selenium retention in the organic matter of Swedish forest soils. J Soil Sci 43:461–472

    Article  CAS  Google Scholar 

  • Huang X, Liu X, Luo Q, Liu J, Shen J (2011) Artificial selenoenzymes: Designed and redesigned. Chem Soc Rev 40:1171–1184

  • Ihnat M (1992) Chapter 16 selenium. Techniques and instrumentation in analytical chemistry. In: Stoeppler M (ed) Hazardous Metals in the Environment, vol 12, pp 475–515

  • Iwaoka M, Arai K (2013) From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr Chem Biol 7:2–24

    Article  CAS  Google Scholar 

  • Johnson TM (2004) A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes. Chem Geol 204:201–214

    Article  CAS  Google Scholar 

  • Jordan N, Ritter A, Scheinost AC, Weiss S, Schild D, Hübner R (2014) Selenium(IV) uptake by maghemite (γ-Fe2O3). Environ Sci Technol 48:1665–1674

    Article  CAS  Google Scholar 

  • Kamei-Ishikawa N, Tagami K, Uchida S (2007) Sorption kinetics of selenium on humic acid. J Radioanal Nucl Chem 274:555–561

    Article  CAS  Google Scholar 

  • Kitaguchi T, Ogra Y, Iwashita Y, Suzuki KT (2008) Speciation of selenium in selenium-enriched seeds, buckwheat (Fagopyrum esculentum Moench) and quinoa (Chenopodium quinoa Willdenow). Eur Food Res Technol 227:1455–1460

    Article  CAS  Google Scholar 

  • König S, Luguet A, Lorand J-, Wombacher F, Lissner M (2012) Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochim Cosmochim Acta 86:354–366

    Article  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  Google Scholar 

  • Kunenkov EV, Kononikhin AS, Perminova IV, Hertkorn N, Gaspar A, Schmitt-Kopplin P, Popov IA, Garmash AV, Nikolaev EN (2009) Total mass difference statistics algorithm: a new approach to identification of high-mass building blocks in electrospray ionization fourier transform ion cyclotron mass spectrometry data of natural organic matter. Anal Chem 81:10106–10115

    Article  CAS  Google Scholar 

  • Laglera LM, Tovar-Sánchez A (2012) Direct recognition and quantification by voltammetry of thiol/thioamide mixes in seawater. Talanta 89:496–504

    Article  CAS  Google Scholar 

  • Laglera LM, Van Den Berg CMG (2003) Copper complexation by thiol compounds in estuarine waters. Mar Chem 82:71–89

    Article  CAS  Google Scholar 

  • Laglera LM, van den Berg CMG (2006) Photochemical oxidation of thiols and copper complexing ligands in estuarine waters. Mar Chem 101:130–140

    Article  CAS  Google Scholar 

  • Laglera LM, Downes J, Tovar-Sánchez A, Monticelli D (2014) Cathodic pseudopolarography: a new tool for the identification and quantification of cysteine, cystine and other low molecular weight thiols in seawater. Anal Chim Acta 836:24–33

    Article  CAS  Google Scholar 

  • Lakin HW (1972) Selenium accumulation in soils and its absorption by plants and animals. Spec Pap Geol Soc Am 140:45–53

    CAS  Google Scholar 

  • Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  CAS  Google Scholar 

  • Lidman F, Mörth C-, Björkvald L, Laudon H (2011) Selenium dynamics in boreal streams: the role of wetlands and changing groundwater tables. Environ Sci Technol 45:2677–2683

    Article  CAS  Google Scholar 

  • Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta Gen Subj 1790:1424–1428

    Article  CAS  Google Scholar 

  • Luoma SN, Presser TS (2009) Emerging opportunities in management of selenium contamination. Environ Sci Technol 43:8483–8487

    Article  CAS  Google Scholar 

  • Maurer F, Christl I, Kretzschmar R (2010) Reduction and reoxidation of humic acid: influence on spectroscopic properties and proton binding. Environ Sci Technol 44:5787–5792

    Article  CAS  Google Scholar 

  • Mechora T, Germ M, Stibilj V (2012) Selenium and its species in the aquatic moss Fontinalis antipyretica. Sci Total Environ 438:122–126

    Article  CAS  Google Scholar 

  • Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371

    Article  CAS  Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco MDC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Article  CAS  Google Scholar 

  • Nogueira CW, Rocha JBT (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85:1313–1359

    Article  CAS  Google Scholar 

  • Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Ogra Y, Anan Y (2009) Selenometabolomics: identification of selenometabolites and specification of their biological significance by complementary use of elemental and molecular mass spectrometry. J Anal At Spectrom 24:1477–1488

    Article  CAS  Google Scholar 

  • Ogra Y, Anan Y (2012) Selenometabolomics explored by speciation. Biol Pharm Bull 35:1863–1869

    Article  CAS  Google Scholar 

  • Pettine M, Gennari F, Campanella L, Casentini B, Marani D (2012) The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions. Geochim Cosmochim Acta 83:37–47

    Article  CAS  Google Scholar 

  • Pettine M, Gennari F, Campanella L (2013) The reaction of selenium (IV) with ascorbic acid: its relevance in aqueous and soil systems. Chemosphere 90:245–250

    Article  CAS  Google Scholar 

  • Qin H-, Zhu J-, Liang L, Wang M-, Su H (2013) The bioavailability of selenium and risk assessment for human selenium poisoning in high-Se areas, China. Environ Int 52:66–74

    Article  CAS  Google Scholar 

  • Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    Article  CAS  Google Scholar 

  • Sakuragi T, Sawa S, Sato S, Kozaki T, Mitsugashira T, Hara M, Suzuki Y (2005) Interaction of americium(III) with humic acid over wide pH region. J Radioanal Nucl Chem 265:349–353

    Article  CAS  Google Scholar 

  • Schellenger AEP, Larese-Casanova P (2013) Oxygen isotope indicators of selenate reaction with Fe(II) and Fe(III) hydroxides. Environ Sci Technol 47:6254–6262

    CAS  Google Scholar 

  • Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M (2014) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ. doi:10.1016/j.scitotenv.2014.05.142

  • Schlekat CE, Dowdle PR, Lee B-, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis. Environ Sci Technol 34:4504–4510

    Article  CAS  Google Scholar 

  • Schmidt R, Tantoyotai P, Fakra SC, Marcus MA, Yang SI, Pickering IJ, Bañuelos GS, Hristova KR, Freeman JL (2013) Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production. Environ Sci Technol 47:5057–5065

    Article  CAS  Google Scholar 

  • Séby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium speciesat 25°C. Chem Geol 171:173–194

    Article  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  Google Scholar 

  • Sharma VK, Casteran F, Millero FJ, De Stefano C (2002) Dissociation constants of protonated cysteine species in NaCl media. J Solut Chem 31:783–792

    Article  CAS  Google Scholar 

  • Sohrin Y, Bruland KW (2011) Global status of trace elements in the ocean. TrAC Trends Anal Chem 30:1291–1307

    Article  CAS  Google Scholar 

  • Stroud JL, McGrath SP, Zhao F- (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92:222–236

    Article  CAS  Google Scholar 

  • Struyk Z, Sposito G (2001) Redox properties of standard humic acids. Geoderma 102:329–346

    Article  CAS  Google Scholar 

  • Tabelin CB, Hashimoto A, Igarashi T, Yoneda T (2014) Leaching of boron, arsenic and selenium from sedimentary rocks: II. pH dependence, speciation and mechanisms of release. Sci Total Environ 473–474:244–253

    Article  Google Scholar 

  • Tam S-, Chow A, Hadley D (1995) Effects of organic component on the immobilization of selenium on iron oxyhydroxide. Sci Total Environ 164:1–7

    Article  CAS  Google Scholar 

  • Tam S-, Johnson SA, Graham A (1999) The effect of organic structures on pentachlorophenol adsorption on soil. Water Air Soil Pollut 115:337–346

    Article  CAS  Google Scholar 

  • Tolu J, Le Hécho I, Bueno M, Thiry Y, Potin-Gautier M (2011) Selenium speciation analysis at trace level in soils. Anal Chim Acta 684:126–133

    Article  CAS  Google Scholar 

  • Tolu J, Di Tullo P, Le Hécho I, Thiry Y, Pannier F, Potin-Gautier M, Bueno M (2014a) A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils. Anal Bioanal Chem 406:1221–1231

    Article  CAS  Google Scholar 

  • Tolu J, Thiry Y, Bueno M, Jolivet C, Potin-Gautier M, Le Hécho I (2014b) Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci Total Environ 479–480:93–101

    Article  Google Scholar 

  • Torres J, Pintos V, Dominguez S, Kremer C, Kremer E (2010) Selenite and selenate speciation in natural waters: interaction with divalent metal ions. J Solut Chem 39:1–10

    Article  CAS  Google Scholar 

  • Uden PC, Boakye HT, Kahakachchi C, Tyson JF (2004) Selective detection and identification of Se containing compounds—review and recent developments. J Chromatogr A 1050:85–93

    Article  CAS  Google Scholar 

  • VillaRomero JF, Kausch M, Pallud C (2013) Selenate reduction and adsorption in littoral sediments from a hypersaline California lake, the Salton Sea. Hydrobiologia 709:129–142

    Article  CAS  Google Scholar 

  • Wallschläger D, Feldmann J (2010) Formation, occurrence, significance, and analysis of organoselenium and organotellurium compounds in the environment. Metal Ions Life Sci 7:319–364

    Article  Google Scholar 

  • Wang Z, Becker H (2013) Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499:328–331

    Article  CAS  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, Amini M, Charlet L (2012) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–579

    Article  CAS  Google Scholar 

  • Zhu J-, Johnson TM, Clark SK, Zhu X-, Wang X- (2014) Selenium redox cycling during weathering of Se-rich shales: a selenium isotope study. Geochim Cosmochim Acta 126:228–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

V.K. Sharma and R. Zboril acknowledge the support by the Operational Program Research and Development for Innovations–European Regional Development Fund (CZ.1.05/2.1.00/03.0058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virender K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.K., McDonald, T.J., Sohn, M. et al. Biogeochemistry of selenium. A review. Environ Chem Lett 13, 49–58 (2015). https://doi.org/10.1007/s10311-014-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0487-x

Keywords

Navigation