Skip to main content
Log in

Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Tomato (Lycopersicon esculentum Miller) cv. Jiahe No. 9 (a salinity-resistant cultivar) and cv. Shuangfeng 87-5 (a salinity-sensitive cultivar) were used as experimental materials to investigate the effects of exogenous selenium (Na2SeO3 0.05 mM) on plant growth, chlorophyll fluorescence, photosynthetic rate, and antioxidative metabolism of chloroplasts in tomato seedlings under NaCl (100 mM) stress. Salt stress significantly inhibited plant growth, net photosynthetic rate (P n), maximum quantum yield of PSII (F v/F m), actual photochemical efficiency of PSII (Φ PSII), photochemical quenching coefficient (q P), and non-photochemical quenching coefficient (q N) of both cultivars, whereas application of Se reversed the negative effects of salt stress. Furthermore, application of Se significantly decreased the levels of hydrogen peroxide (H2O2) and malondialdehyde. Application of Se increased the activities of superoxidase dismutase, glutathione reductase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione peroxidase, and thioredoxin reductase, and the contents of ascorbate, glutathione (GSH) and NADPH, and the ratios of GSH/GSSH, AsA/DHA, and NADPH/ NADP+ in the salt-stressed chloroplasts of both cultivars. These results suggest that Se alleviates salt-induced oxidative stress through regulating the antioxidant defense systems in the chloroplasts of tomato seedlings, which is associated with the improvement of the photochemical efficiency of PSII, thereby maintaining higher photosynthetic rates. In addition, the salt tolerance of Jiahe No. 9 is closely related with high reactive oxygen species scavenging activity and reducing power levels in the chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. J Plant Physiol 141:391–396

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Breznik B, Germ M, Gaberšcik A, Kreft I (2005) Combined effects of elevated UV-B radiation and the addition of selenium on common and tartary buckwheat. Photosynthetica 43:583–589

    Article  CAS  Google Scholar 

  • Burzy-ski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42:505–510

    Article  Google Scholar 

  • Chu JZ, Yao XQ, Zhang ZN (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ (2008) Redox signal integration: from stimulus to networks and genes. Physiol Plant 133:459–468

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48(12):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Duan JJ, Guo SR, Kang YY, Zhou GX, Liu XE (2009) Effects of exogenous spermidine on active oxygen scavenging system and bound polyamine contents in chloroplasts of cucumber under salt stress. Acta Ecol Sin 29:653–661

    CAS  Google Scholar 

  • Foyer CH (1996) Free radical processes in plants. Biochem Soc Trans 24:427–434

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role on ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Germ M, Kreft I, Osvald J (2005) Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiol Biochem 43:445–448

    Article  CAS  PubMed  Google Scholar 

  • Germ M, Kreft I, Stibilj V, Urbanc-Berčič O (2007) Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. Plant Physiol Biochem 45:162–167

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 12:909–1026

    Article  Google Scholar 

  • Griffiths OW (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  Google Scholar 

  • Han GQ, Li J, Song MM, Liu HY (2010) Effects of selenium on the germination of tomato seeds and protective system against active oxygen under salt stress. J Shihezi Univ 28(4):422–428 (in Chinese)

    CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an antioxidant and prooxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    Article  CAS  PubMed  Google Scholar 

  • Hatfield D, Choi IS, Mischke S, Owens LD (1992) Selenocysteinyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Commun 184:254–259

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts, I: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Google Scholar 

  • Kong LG, Wang M, Bi DL (2005) Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regul 45:155–163

    Article  CAS  Google Scholar 

  • Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and Spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  CAS  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid and spinach (Spinacea oleracea) chloroplasts: the effect of hydrogen peroxide and paraquat. J Biochem 210:899–903

    Article  CAS  Google Scholar 

  • Lu CM, Qiu NW, Wang BS, Zhang JH (2003) Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot 54:851–860

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Yu XQ, Fan XM, Wang JW, Liu HY (2013) The regulation effect of exogenous selenium on antioxidative system in leaves of processing tomato seedling under salt stress. North Hortic 3:4–8 (in Chinese)

    Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van-Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:1360–1385

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:679–690

    Google Scholar 

  • Nickel RS, Cunningham BA (1969) Improved peroxidase assay method using ieuco 2,3,6-trichlcroindophenol and application to comparative measurements of peroxidase catalysis. Anal Physiol 172:385–390

    Google Scholar 

  • Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Patterson BD, Macrae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plants extracts using titanium (IV). Anna Biochem 134:487–492

    Article  Google Scholar 

  • Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48:1911–1917

    Article  Google Scholar 

  • Prasad PVV, Vu JCV, Boote KJ, Allen LH Jr (2009) Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct Plant Biol 36:761–769

    Article  CAS  Google Scholar 

  • Pukacka S, Ratajczak E, Kalemba E (2011) The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J Plant Physiol 168(3):220–225

    Article  CAS  PubMed  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Robinson SP, Downton WJ, Millhouse JA (1983) Photosynthesis and ion content of leaves and chloroplasts of salt-stressed spinach. Plant Physiol 73:238–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seigneurin-Berny D, Salvi D, Aj Dorne, Joyard J, Rolland N (2008) Percoll-puried and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol Biochem 46:951–955

    Article  CAS  PubMed  Google Scholar 

  • Seppänen M, Turakainen M, Hartikainen H (2003) Selenium effects on oxidative stress in potato. Plant Sci 165:311–319

    Article  Google Scholar 

  • Serrato AJ, Pérez-Ruiz JM, Spínola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Bio Chem 279(42):43821–43827

    Article  CAS  Google Scholar 

  • Shu S, Sun J, Guo SR, Li J, Liu CJ, Wang CY, Du CX (2010) Effects of exogenous putrescine on PSII photochemistry and ion distribution of cucumber seedlings under salt stress. Acta Hortic Sin 37:1065–1072

    CAS  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

    Article  CAS  Google Scholar 

  • Turakainen M, Hartikainen H, Seppänen MM (2004) Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J Agric Food Chem 52:5378–5382

    Article  CAS  PubMed  Google Scholar 

  • Van-Breusegem F, Slooten L, Stassart JM, Botterman J, Moens T, Van-Montagu M, Inze D (1999) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot 50:71–78

    Article  Google Scholar 

  • Wang CQ (2011) Water-stress mitigation by selenium in Trifolium repens L. J Plant Nutr Soil Sci 174(2):276–282

    Article  CAS  Google Scholar 

  • Wang YD, Wang X, Wong YS (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteomics 75:184–1866

    Google Scholar 

  • Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 237:55–61

    Article  CAS  Google Scholar 

  • Yao XQ, Chu JZ, Ba CJ (2010) Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biol Trace Elem Res 136(1):96–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 31160391 and No. 31360478) and International cooperation project of Xinjiang production and Construction Corps (No. 2013YD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-ying Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, M., Ma, L., Wang, J. et al. Selenium Promotes the Growth and Photosynthesis of Tomato Seedlings Under Salt Stress by Enhancing Chloroplast Antioxidant Defense System. J Plant Growth Regul 33, 671–682 (2014). https://doi.org/10.1007/s00344-014-9416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-014-9416-2

Keywords

Navigation