Skip to main content
Log in

In vivo biosensors: mechanisms, development, and applications

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In vivo biosensors can recognize and respond to specific cellular stimuli. In recent years, biosensors have been increasingly used in metabolic engineering and synthetic biology, because they can be implemented in synthetic circuits to control the expression of reporter genes in response to specific cellular stimuli, such as a certain metabolite or a change in pH. There are many types of natural sensing devices, which can be generally divided into two main categories: protein-based and nucleic acid-based. Both can be obtained either by directly mining from natural genetic components or by engineering the existing genetic components for novel specificity or improved characteristics. A wide range of new technologies have enabled rapid engineering and discovery of new biosensors, which are paving the way for a new era of biotechnological progress. Here, we review recent advances in the design, optimization, and applications of in vivo biosensors in the field of metabolic engineering and synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADC:

Analog-to-digital converter

ADH:

Alcohol dehydrogenase

1,4-BDO:

1,4-Butanediol

CAD :

Cis-aconitate decarboxylase gene

CCM:

Cis,cis-muconic acid

CDA:

Cytidine deaminase

2′,3′-cGAMP:

(2′-5′,3′-5′) Cyclic guanosine monophosphate-adenosine monophosphate

CE:

Capillary electrophoresis

CFP:

Cyan fluorescent protein

COMPACTER:

Customized optimization of metabolic pathways by combinatorial transcriptional engineering

DFHBI:

3,5-Difluoro-4-hydroxybenzylidene imidazolinone

34DHB:

3,4-Dihydroxy benzoate

l-DOPA:

l-3,4-Dihydroxyphenylalanine

DSRS:

Dynamic sensor-regulator system

epPCR:

Error-prone PCR

FACS:

Fluorescence activated cell sorting

fcy1 :

Cytosine deaminase gene

FFA:

Free fatty acid

FI:

Fluorescence intensity

FP:

Fluorescent proteins

FPP:

Farnesyl pyrophosphate

FREP:

Feedback-regulated evolution of phenotype

FRET:

Förster resonance energy transfer

GEMM:

Genes for the environment, membranes, and motility

GFP:

Green fluorescent protein

GlcN6P:

Glucosamine 6-phosphate

GlcNAc:

N-acetyl glucosamine

gltA :

Citrate synthetase gene

GPCR:

G-protein-coupled receptors

HHR:

Hammerhead ribozyme

Hi-Fi:

High-fidelity

HK:

Histidine kinase

3-HP:

3-Hydroxy propionic acid

IL:

Interleukin

IPTG:

Isopropyl-beta-d-thiogalactopyranoside

α-KGDH:

α-Ketoglutarate dehydrogenase

LAO:

Lysine-binding periplasmic protein

LTTR:

LysR-type transcriptional regulator

MAGE:

Multiplex automated genome engineering

malQ :

Maltase gene

MBP:

Metabolite-binding protein

MetN:

Methionine-binding protein

MT:

Metallothionein

MVA:

Mevalonate

NAGK:

N-acetyl-l-glutamate kinase

NeuAC:

N-acetylneuramine acid

NMM:

N-methyl mesoporphyrin IX

OAH:

O-acetyl homoserine

OAS:

O-acetyl serine

PBP:

Periplasmic-binding proteins

PopQC:

Population quality control

QS:

Quorum sensing

RAGE:

RNAi-assisted genome evolution

RBS:

Ribosome binding site

ROK:

Repressor, open reading frame, kinase

RR:

Response regulator

SAM:

S-adenosylmethionine

SAH:

S-adenosyl-l-homocysteine

SATRE:

Sensor-assisted transcriptional regulator engineering

SBA:

Streptavidin-binding aptamer

SELEX:

Systematic evolution of ligands by exponential enrichment

T6P:

Trehalose-6-phosphate

Tc:

Tetracycline

TCA:

Tricarboxylic acid

TCS:

Two-component system

TF:

Transcriptional factor

TreR:

Trehalose repressor

TRMR:

Trackable multiplex recombineering

YFP:

Yellow fluorescent protein

YOGE:

Yeast oligo-mediated genome engineering

ZF:

Zinc finger

References

  1. Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25:167–178. https://doi.org/10.1016/0378-1119(83)90222-6

    Article  PubMed  CAS  Google Scholar 

  2. Amaro F, Turkewitz AP, Martíngonzález A, Gutiérrez JC (2014) Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Biometals 27:195. https://doi.org/10.1007/s10534-014-9704-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ameen S, Ahmad M, Mohsin M, Qureshi MI, Ibrahim MM, Abdin MZ, Ahmad A (2016) Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells. J Nanobiotechnol 14:49. https://doi.org/10.1186/s12951-016-0204-y

    Article  CAS  Google Scholar 

  4. Amin EB, Mishler DM, Wang J, Walker H, Salis HM (2016) Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res 44:1–13. https://doi.org/10.1093/nar/gkv1289

    Article  CAS  Google Scholar 

  5. Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808. https://doi.org/10.1128/aem.02046-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ausländer D, Ausländer S, Charpin-El Hamri G, Sedlmayer F, Müller M, Frey O, Hierlemann A, Stelling J, Fussenegger M (2014) A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device. Mol Cell 55:397–408. https://doi.org/10.1016/j.molcel.2014.06.007

    Article  PubMed  CAS  Google Scholar 

  7. Becker K, Beer C, Freitag M, Kück U (2015) Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 96:1002–1022. https://doi.org/10.1111/mmi.12987

    Article  PubMed  CAS  Google Scholar 

  8. Bereza-Malcolm LT, Mann G, Franks AE (2015) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol 4:535–546. https://doi.org/10.1021/sb500286r

    Article  PubMed  CAS  Google Scholar 

  9. Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13:R40. https://doi.org/10.1186/gb-2012-13-5-r40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bose D, Su Y, Marcus A, Raulet DH, Hammond MC (2016) An RNA-based fluorescent biosensor for high-throughput analysis of the cGAS-cGAMP-STING pathway. Cell Chem Biol 23:1539–1549. https://doi.org/10.1016/j.chembiol.2016.10.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Brink DP, Borgström C, Tueros FG, Gorwa-Grauslund MF (2016) Real-time monitoring of the sugar sensing in Saccharomyces cerevisiae indicates endogenous mechanisms for xylose signaling. Microb Cell Fact 15:183. https://doi.org/10.1186/s12934-016-0580-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brockman IM, Prather KLJ (2015) Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotechnol J 10:1360–1369. https://doi.org/10.1002/biot.201400422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J (2014) Altered sterol composition renders yeast thermotolerant. Science 346:75–78. https://doi.org/10.1126/science.1258137

    Article  PubMed  CAS  Google Scholar 

  14. Ceres P, Garst AD, Marcano-Velázquez JG, Batey RT (2013) Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. ACS Synth Biol 2:463–472. https://doi.org/10.1021/sb4000096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ceres P, Trausch JJ, Batey RT (2013) Engineering modular ‘ON’RNA switches using biological components. Nucleic Acids Res 41:10449–10461. https://doi.org/10.1093/nar/gkt787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chen W, Zhang S, Jiang P, Yao J, He Y, Chen L, Gui X, Dong Z, Tang SY (2015) Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metab Eng 30:149–155. https://doi.org/10.1016/j.ymben.2015.05.004

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L (2017) DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00804 (In press)

    Article  PubMed  Google Scholar 

  18. Choi S-L, Rha E, Lee SJ, Kim H, Kwon K, Jeong Y-S, Rhee YH, Song JJ, Kim H-S, Lee S-G (2013) Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth Biol 3:163–171. https://doi.org/10.1021/sb400112u

    Article  PubMed  CAS  Google Scholar 

  19. Chong H, Ching CB (2016) Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR. ACS Synth Biol 5:1290–1298. https://doi.org/10.1021/acssynbio.6b00061

    Article  PubMed  CAS  Google Scholar 

  20. Chou HH, Keasling JD (2013) Programming adaptive control to evolve increased metabolite production. Nat Commun 4:2595. https://doi.org/10.1038/ncomms3595

    Article  PubMed  CAS  Google Scholar 

  21. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  PubMed  CAS  Google Scholar 

  22. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 13:1039–1046. https://doi.org/10.1038/nbt.2689

    Article  CAS  Google Scholar 

  23. Danino T, Prindle A, Kwong GA, Skalak M, Li H, Allen K, Hasty J, Bhatia SN (2015) Programmable probiotics for detection of cancer in urine. Sci Transl Med 7:289ra284. https://doi.org/10.1126/scitranslmed.aaa3519

    Article  CAS  Google Scholar 

  24. David F, Nielsen J, Siewers V (2016) Flux control at the malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS Synth Biol 5:224. https://doi.org/10.1021/acssynbio.5b00161

    Article  PubMed  CAS  Google Scholar 

  25. de los Santos ELC, Meyerowitz JT, Mayo SL, Murray RM (2016) Engineering transcriptional regulator effector specificity using computational design and in vitro rapid prototyping: developing a vanillin sensor. ACS Synth Biol 5:287–295. https://doi.org/10.1021/acssynbio.5b00090

    Article  PubMed  CAS  Google Scholar 

  26. De Michele R, Ast C, Loqué D, Ho C-H, Andrade SL, Lanquar V, Grossmann G, Gehne S, Kumke MU, Frommer WB (2013) Fluorescent sensors reporting the activity of ammonium transceptors in live cells. eLife 2:e00800. https://doi.org/10.7554/elife.00800

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dekker L, Polizzi KM (2017) Sense and sensitivity in bioprocessing—detecting cellular metabolites with biosensors. Curr Opin Chem Biol 40:31–36. https://doi.org/10.1016/j.cbpa.2017.05.014

    Article  PubMed  CAS  Google Scholar 

  28. Delépine B, Libis V, Carbonell P, Faulon J-L (2016) SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Res 44:226–231. https://doi.org/10.1093/nar/gkw305

    Article  CAS  Google Scholar 

  29. DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11:465–471. https://doi.org/10.1038/nchembio.1816

    Article  PubMed  CAS  Google Scholar 

  30. Desai SK, Gallivan JP (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 126:13247–13254. https://doi.org/10.1021/ja048634j

    Article  PubMed  CAS  Google Scholar 

  31. DiCarlo JE, Conley AJ, Penttilä M, Jäntti J, Wang HH, Church GM (2013) Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol 2:741. https://doi.org/10.1021/sb400117c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2:47–58. https://doi.org/10.1021/sb300091d

    Article  PubMed  CAS  Google Scholar 

  33. Dong H, Liu Y, Zu X, Li N, Li F, Zhang D (2015) An enzymatic assay for high-throughput screening of cytidine-producing microbial strains. PLoS One 10:e0121612. https://doi.org/10.1371/journal.pone.0121612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dong H, Zu X, Zheng P, Zhang D (2015) A rapid enzymatic assay for high-throughput screening of adenosine-producing strains. Microb Biotechnol 8:230–238. https://doi.org/10.1111/1751-7915.12189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40:e142. https://doi.org/10.1093/nar/gks549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Eaton RM, Shallcross JA, Mael LE, Mears KS, Minkoff L, Scoville DJ, Whelan RJ (2015) Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing. Anal Bioanal Chem 407:6965–6973. https://doi.org/10.1007/s00216-015-8665-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Eckdahl TT, Campbell AM, Heyer LJ, Poet JL, Blauch DN, Snyder NL, Atchley DT, Baker EJ, Brown M, Brunner EC (2015) Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS One 10:e0118322. https://doi.org/10.1371/journal.pone.0118322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ehrenworth AM, Claiborne T, Peralta-Yahya P (2017) Medium-throughput screen of microbially produced serotonin via a G-protein-coupled receptor-based sensor. Biochemistry. https://doi.org/10.1021/acs.biochem.7b00605 (In press)

    Article  PubMed  Google Scholar 

  39. Fang M, Wang T, Zhang C, Bai J, Zheng X, Zhao X, Lou C, Xing X-H (2015) Intermediate-sensor assisted push-pull strategy and its application in heterologous deoxyviolacein production in Escherichia coli. Metab Eng 33:41–51. https://doi.org/10.1016/j.ymben.2015.10.006

    Article  PubMed  CAS  Google Scholar 

  40. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18:533–537. https://doi.org/10.1038/75398

    Article  PubMed  CAS  Google Scholar 

  41. Feist AM, Zielinski DC, Orth JD, Schellenberger J, Herrgard MJ, Palsson BØ (2010) Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab Eng 12:173–186. https://doi.org/10.1016/j.ymben.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  42. Felnagle EA, Chaubey A, Noey EL, Houk KN, Liao JC (2012) Engineering synthetic recursive pathways to generate non-natural small molecules. Nat Chem Biol 8:518–526. https://doi.org/10.1038/nchembio.959

    Article  PubMed  CAS  Google Scholar 

  43. Feng J, Jester BW, Tinberg CE, Mandell DJ, Antunes MS, Chari R, Morey KJ, Rios X, Medford JI, Church GM, Fields S, Baker D (2015) A general strategy to construct small molecule biosensors in eukaryotes. eLife 4:e10606. https://doi.org/10.7554/elife.10606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Fowler CC, Brown ED, Li Y (2010) Using a riboswitch sensor to examine coenzyme B(12) metabolism and transport in E. coli. Chem Biol 17:756. https://doi.org/10.1016/j.chembiol.2010.05.025

    Article  PubMed  CAS  Google Scholar 

  45. Fowler ZL, Gikandi WW, Koffas MA (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839. https://doi.org/10.1128/AEM.00270-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Frei CS, Wang Z, Qian S, Deutsch S, Sutter M, Cirino PC (2016) Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone. Protein Sci 25:804. https://doi.org/10.1002/pro.2873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T, Winkler Wade C, Breaker Ronald R (2015) Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Mol Cell 57:1088–1098. https://doi.org/10.1016/j.molcel.2015.02.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ganesh I, Ravikumar S, Lee SH, Park SJ, Hong SH (2013) Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. J Biotechnol 168:560–566. https://doi.org/10.1016/j.jbiotec.2013.09.003

    Article  PubMed  CAS  Google Scholar 

  49. Ganesh I, Ravikumar S, Yoo IK, Hong SH (2015) Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system. Bioprocess Biosyst Eng 38:1–8. https://doi.org/10.1007/s00449-014-1321-3

    Article  CAS  Google Scholar 

  50. Giel JL, Nesbit AD, Mettert EL, Fleischhacker AS, Wanta BT, Kiley PJ (2013) Regulation of iron–sulphur cluster homeostasis through transcriptional control of the Isc pathway by [2Fe–2S]–IscR in Escherichia coli. Mol Microbiol 87:478–492. https://doi.org/10.1111/mmi.12052

    Article  PubMed  CAS  Google Scholar 

  51. Goers L, Ainsworth C, Goey CH, Kontoravdi C, Freemont PS, Polizzi KM (2017) Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol Bioeng 114:1290–1300. https://doi.org/10.1002/bit.26254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Goers L, Kylilis N, Tomazou M, Wen KY, Freemont P, Polizzi K (2013) Engineering microbial biosensors. Microbial synthetic biology. Elsevier, Amsterdam, pp 119–156

    Book  Google Scholar 

  53. Grünewald FS (2013) Periplasmic binding proteins in biosensing applications. Advances in chemical bioanalysis. Springer, Berlin, pp 205–235

    Google Scholar 

  54. Gupta A, Brockman Reizman IM, Reisch CR, Prather KLJ (2017) Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol 35:273–279. https://doi.org/10.1038/nbt.3796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hallberg ZF, Su Y, Kitto RZ, Hammond MC (2017) Engineering and in vivo applications of riboswitches. Annu Rev Biochem 86:1611–1625. https://doi.org/10.1146/annurev-biochem-060815-014628

    Article  CAS  Google Scholar 

  56. Hao Z, Lou H, Zhu R, Zhu J, Zhang D, Zhao BS, Zeng S, Chen X, Chan J, He C, Chen PR (2014) The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat Chem Biol 10:21–28. https://doi.org/10.1038/nchembio.1380

    Article  PubMed  CAS  Google Scholar 

  57. Hector RE, Mertens JA (2017) A synthetic hybrid promoter for xylose-regulated control of gene expression in Saccharomyces yeasts. Mol Biotechnol 59:24–33. https://doi.org/10.1007/s12033-016-9991-5

    Article  PubMed  CAS  Google Scholar 

  58. Hessels AM, Chabosseau P, Bakker MH, Engelen W, Rutter GA, Taylor KM, Merkx M (2015) eZinCh-2: a versatile, genetically encoded FRET sensor for cytosolic and intraorganelle Zn2+ imaging. ACS Chem Biol 10:2126–2134. https://doi.org/10.1021/acschembio.5b00211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hoffmann K, Grünberger A, Lausberg F, Bott M, Eggeling L (2013) Visualization of imbalances in sulfur assimilation and synthesis of sulfur-containing amino acids at the single-cell level. Appl Environ Microbiol 79:6730–6736. https://doi.org/10.1128/AEM.01804-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23. https://doi.org/10.1016/j.cell.2009.12.029

    Article  PubMed  CAS  Google Scholar 

  61. Hsu CY, Chen BK, Hu RH, Chen BS (2016) Systematic design of a quorum sensing-based biosensor for enhanced detection of metal ion in Escherichia coli. IEEE Trans Biomed Circuits Syst 10:593–601. https://doi.org/10.1109/TBCAS.2015.2495151

    Article  PubMed  Google Scholar 

  62. Imperial College London iGEM project (2010) Parasite detection with a rapid response. http://2010.igem.org/Team:Imperial_College_London. Accessed 24 Jan 2018

  63. Immethun CM, Ng KM, DeLorenzo DM, Waldron-Feinstein B, Lee Y-C, Moon TS (2016) Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol Bioeng 113:433–442. https://doi.org/10.1002/bit.25722

    Article  PubMed  CAS  Google Scholar 

  64. Jang S, Jang S, Xiu Y, Kang TJ, Lee S-H, Koffas MA, Jung GY (2017) Development of artificial riboswitches for monitoring of naringenin in vivo. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00128 (In press)

    Article  PubMed  Google Scholar 

  65. Jha RK, Chakraborti S, Kern TL, Fox DT, Strauss CEM (2015) Rosetta comparative modeling for library design: engineering alternative inducer specificity in a transcription factor. Proteins Struct Funct Bioinf 83:1327–1340. https://doi.org/10.1002/prot.24828

    Article  CAS  Google Scholar 

  66. Jha RK, Kern TL, Fox DT, Strauss CEM (2014) Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res 42:8150–8160. https://doi.org/10.1093/nar/gku444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kannan Maruthamuthu M, Ganesh I, Ravikumar S, Hong SH (2015) Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol Lett 37:659–664. https://doi.org/10.1007/s10529-014-1732-x

    Article  CAS  Google Scholar 

  68. Kasey C, Zerrad M, Li Y, Cropp TA, Williams GJ (2017) Development of transcription factor-based designer macrolide biosensors for metabolic engineering and synthetic biology. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00287 (In press)

    Article  PubMed  Google Scholar 

  69. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  PubMed  CAS  Google Scholar 

  70. Kazanov MD, Li X, Gelfand MS, Osterman AL, Rodionov DA (2013) Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum. Nucleic Acids Res 41:790–803. https://doi.org/10.1093/nar/gks1184

    Article  PubMed  CAS  Google Scholar 

  71. Kellenberger CA, Wilson SC, Saleslee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135:4906. https://doi.org/10.1021/ja311960g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Klauser B, Atanasov J, Siewert LK, Hartig JS (2015) Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae. ACS Synth Biol 4:516–525. https://doi.org/10.1021/sb500062p

    Article  PubMed  CAS  Google Scholar 

  73. Ko W, Kim S, Lee HS (2017) Engineering a periplasmic binding protein for amino acid sensors with improved binding properties. Org Biomol Chem. https://doi.org/10.1039/C7OB01847A (In press)

    Article  PubMed  Google Scholar 

  74. Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci USA 111:4838–4843. https://doi.org/10.1073/pnas.1321321111

    Article  PubMed  CAS  Google Scholar 

  75. Kumari P, Ghosh E, Shukla AK (2015) Emerging approaches to GPCR ligand screening for drug discovery. Trends Mol Med 21:687–701. https://doi.org/10.1016/j.molmed.2015.09.002

    Article  PubMed  CAS  Google Scholar 

  76. Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS (2017) Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol J. https://doi.org/10.1002/biot.201600687 (In press)

    Article  PubMed  Google Scholar 

  77. Lee S-W, Oh M-K (2015) A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab Eng 28:143–150. https://doi.org/10.1016/j.ymben.2015.01.004

    Article  PubMed  CAS  Google Scholar 

  78. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563. https://doi.org/10.1016/j.copbio.2008.10.014

    Article  PubMed  CAS  Google Scholar 

  79. Lee Y, Basith S, Choi S (2017) Recent advances in structure-based drug design targeting class a G protein-coupled receptors utilizing crystal structures and computational simulations. J Med Chem. https://doi.org/10.1021/acs.jmedchem.6b01453 (In press)

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lefrançois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genom 10:37. https://doi.org/10.1186/1471-2164-10-37

    Article  CAS  Google Scholar 

  81. Leonhartsberger S, Huber A, Lottspeich F, Böck A (2001) The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307:93–105. https://doi.org/10.1006/jmbi.2000.4451

    Article  PubMed  CAS  Google Scholar 

  82. Levay A, Brenneman R, Hoinka J, Sant D, Cardone M, Trinchieri G, Przytycka TM, Berezhnoy A (2015) Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. Nucleic Acids Res 43:e82. https://doi.org/10.1093/nar/gkv534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Li S, Si T, Wang M, Zhao H (2015) Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol 4:1308–1315

    Article  PubMed  CAS  Google Scholar 

  84. Liang W-F, Cui L-Y, Cui J-Y, Yu K-W, Yang S, Zhang C, Xing X-H (2017) Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Metab Eng 39:159–168. https://doi.org/10.1016/j.ymben.2016.11.010

    Article  PubMed  CAS  Google Scholar 

  85. Libis V, Delépine B, Faulon J-L (2016) Expanding biosensing abilities through computer-aided design of metabolic pathways. ACS Synth Biol 5:1076–1085. https://doi.org/10.1021/acssynbio.5b00225

    Article  PubMed  CAS  Google Scholar 

  86. Lin JL, Zhu J, Wheeldon I (2016) Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit. Biotechnol J 11:700–707. https://doi.org/10.1002/biot.201500406

    Article  PubMed  CAS  Google Scholar 

  87. Lin LL, Hsu WH (1997) Lactose-induced expression of Bacillus sp. TS-23 amylase gene in Escherichia coli regulated by a T7 promoter. Lett Appl Microbiol 24:365. https://doi.org/10.1046/j.1472-765X.1997.00146.x

    Article  PubMed  CAS  Google Scholar 

  88. Litke JL, You M, Jaffrey SR (2016) Developing fluorogenic riboswitches for imaging metabolite concentration dynamics in bacterial cells. Methods Enzymol 572:315–333. https://doi.org/10.1016/bs.mie.2016.03.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Liu CC, Arkin AP (2010) The case for RNA. Science 330:1185–1186. https://doi.org/10.1126/science.1199495

    Article  PubMed  CAS  Google Scholar 

  90. Liu D, Xiao Y, Evans B, Zhang F (2015) Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 4:132–140. https://doi.org/10.1021/sb400158w

    Article  PubMed  CAS  Google Scholar 

  91. Liu H, Lu T (2015) Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141. https://doi.org/10.1016/j.ymben.2015.03.009

    Article  PubMed  CAS  Google Scholar 

  92. Liu S-D, Wu Y-N, Wang T-M, Zhang C, Xing X-H (2017) Maltose utilization as a novel selection strategy for continuous evolution of microbes with enhanced metabolite production. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00247 (In press)

    Article  PubMed  PubMed Central  Google Scholar 

  93. Liu Y, Li Q, Zheng P, Zhang Z, Liu Y, Sun C, Cao G, Zhou W, Wang X, Zhang D (2015) Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microb Cell Fact 14:121. https://doi.org/10.1186/s12934-015-0311-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Liu Y, Zhuang Y, Ding D, Xu Y, Sun J, Zhang D (2017) Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synth Biol 6:837–848. https://doi.org/10.1021/acssynbio.6b00328

    Article  PubMed  CAS  Google Scholar 

  95. Luo Z, Zhou H, Jiang H, Ou H, Li X, Zhang L (2015) Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection. Analyst 140:2664–2670. https://doi.org/10.1039/C5AN00183H

    Article  PubMed  CAS  Google Scholar 

  96. Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80:6704–6713. https://doi.org/10.1128/aem.01697-14

    Article  PubMed  PubMed Central  Google Scholar 

  97. Machado LFM, Dixon N (2016) Development and substrate specificity screening of an in vivo biosensor for the detection of biomass derived aromatic chemical building blocks. Chem Commun 52:11402–11405. https://doi.org/10.1039/C6CC04559F

    Article  CAS  Google Scholar 

  98. Mahr R, Frunzke J (2015) Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 100:79–90. https://doi.org/10.1007/s00253-015-7090-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194. https://doi.org/10.1016/j.ymben.2015.09.017

    Article  PubMed  CAS  Google Scholar 

  100. Mahr R, von Boeselager RF, Wiechert J, Frunzke J (2016) Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Appl Microbiol Biotechnol 100:6739–6753. https://doi.org/10.1007/s00253-016-7575-8

    Article  PubMed  CAS  Google Scholar 

  101. Mannan AA, Liu D, Zhang F, Oyarzún DA (2017) Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00172 (In press)

    Article  PubMed  Google Scholar 

  102. Marin AM, Souza EM, Pedrosa FO, Souza LM, Sassaki GL, Baura VA, Yates MG, Wassem R, Monteiro RA (2013) Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology 159:167–175. https://doi.org/10.1099/mic.0.061135-0

    Article  PubMed  CAS  Google Scholar 

  103. Martín AS, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF (2013) A genetically encoded FRET lactate sensor and its use to detect the warburg effect in single cancer cells. PLoS One 8:e57712. https://doi.org/10.1371/journal.pone.0057712

    Article  CAS  Google Scholar 

  104. McNerney MP, Watstein DM, Styczynski MP (2015) Precision metabolic engineering: the design of responsive, selective, and controllable metabolic systems. Metab Eng 31:123–131. https://doi.org/10.1016/j.ymben.2015.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Merulla D, van der Meer JR (2016) Regulatable and modulable background expression control in prokaryotic synthetic circuits by auxiliary repressor binding sites. ACS Synth Biol 5:36–45. https://doi.org/10.1021/acssynbio.5b00111

    Article  PubMed  CAS  Google Scholar 

  106. Meyer A, Pellaux R, Potot S, Becker K, Hohmann HP, Panke S, Held M (2015) Optimization of a whole-cell biocatalyst by employing genetically encoded product sensors inside nanolitre reactors. Nat Chem 7:673. https://doi.org/10.1038/NCHEM.2301

    Article  PubMed  CAS  Google Scholar 

  107. Meyer V, Wanka F, Van GJ, Arentshorst M, Ca VDH, Ram AF (2011) Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Environ Microb 77:2975–2983. https://doi.org/10.1128/AEM.02740-10

    Article  CAS  Google Scholar 

  108. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  PubMed  CAS  Google Scholar 

  109. Miyano K, Sudo Y, Yokoyama A, Hisaoka-Nakashima K, Morioka N, Takebayashi M, Nakata Y, Higami Y, Uezono Y (2014) History of the G protein-coupled receptor (GPCR) assays from traditional to a state-of-the-art biosensor assay. J Pharmacol Sci 126:302–309. https://doi.org/10.1254/jphs.14R13CP

    Article  PubMed  CAS  Google Scholar 

  110. Mohsin M, Abdin MZ, Nischal L, Kardam H, Ahmad A (2013) Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosens Bioelectron 50:72–77. https://doi.org/10.1016/j.bios.2013.06.028

    Article  PubMed  CAS  Google Scholar 

  111. Mohsin M, Ahmad A (2014) Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosens Bioelectron 59:358–364. https://doi.org/10.1016/j.bios.2014.03.066

    Article  PubMed  CAS  Google Scholar 

  112. Mohsin M, Ahmad A, Iqbal M (2015) FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 37:1919–1928. https://doi.org/10.1007/s10529-015-1873-6

    Article  PubMed  CAS  Google Scholar 

  113. Mukherjee K, Bhattacharyya S, Peralta-Yahya P (2015) GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synth Biol 4:1261–1269. https://doi.org/10.1021/sb500365m

    Article  PubMed  CAS  Google Scholar 

  114. Müller M, Ausländer S, Spinnler A, Ausländer D, Sikorski J, Folcher M, Fussenegger M (2017) Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat Chem Biol 13:309–316. https://doi.org/10.1038/nchembio.2281

    Article  PubMed  CAS  Google Scholar 

  115. Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One 9:e85731. https://doi.org/10.1371/journal.pone.0085731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Newman JR, Fuqua C (1999) Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203. https://doi.org/10.1016/S0378-1119(98)00601-5

    Article  PubMed  CAS  Google Scholar 

  117. Nomura Y, Yokobayashi Y (2007) Reengineering a natural riboswitch by dual genetic selection. J Am Chem Soc 129:13814–13815. https://doi.org/10.1021/ja076298b

    Article  PubMed  CAS  Google Scholar 

  118. Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY, Sutormin RA, Kazanov MD, Riehl W, Arkin AP, Dubchak I (2013) RegPrecise 3.0—a resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genom 14:745. https://doi.org/10.1186/1471-2164-14-745

    Article  CAS  Google Scholar 

  119. Ohbayashi R, Akai H, Yoshikawa H, Hess WR, Watanabe S (2016) A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J Gen Appl Microbiol 62:154–159. https://doi.org/10.2323/jgam.2016.02.002

    Article  PubMed  CAS  Google Scholar 

  120. Oku M, Hoseki J, Ichiki Y, Sakai Y (2013) A fluorescence resonance energy transfer (FRET)-based redox sensor reveals physiological role of thioredoxin in the yeast Saccharomyces cerevisiae. FEBS Lett 587:793–798. https://doi.org/10.1016/j.febslet.2013.02.003

    Article  PubMed  CAS  Google Scholar 

  121. Ouellet E, Foley JH, Conway EM, Haynes C (2015) Hi-Fi SELEX: a high-fidelity digital-PCR based therapeutic aptamer discovery platform. Biotechnol Bioeng 112:1506–1522. https://doi.org/10.1002/bit.25581

    Article  PubMed  CAS  Google Scholar 

  122. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646. https://doi.org/10.1126/science.1207339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Park J-N, Sohn MJ, Oh D-B, Kwon O, Rhee SK, Hur C-G, Lee SY, Gellissen G, Kang HA (2007) Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 73:5990–6000. https://doi.org/10.1128/AEM.00863-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Peroza EA, Ewald JC, Parakkal G, Skotheim JM, Zamboni N (2015) A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics. Anal Biochem 474:1–7. https://doi.org/10.1016/j.ab.2014.12.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pfleger BF, Pitera DJ, Newman JD, Martin VJ, Keasling JD (2007) Microbial sensors for small molecules: development of a mevalonate biosensor. Metab Eng 9:30–38. https://doi.org/10.1016/j.ymben.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  126. Pham VD, Ravikumar S, Lee SH, Hong SH, Yoo I-K (2013) Modification of response behavior of zinc sensing HydHG two-component system using a self-activation loop and genomic integration. Bioprocess Biosyst Eng 36:1185–1190. https://doi.org/10.1007/s00449-012-0845-7

    Article  PubMed  CAS  Google Scholar 

  127. Porter EB, Polaski JT, Morck MM, Batey RT (2017) Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat Chem Biol 13:295–301. https://doi.org/10.1038/nchembio.2278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Rajkumar AS, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen MK, Keasling JD (2016) Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res 44:e136. https://doi.org/10.1093/nar/gkw553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Raman S, Rogers JK, Taylor ND, Church GM (2014) Evolution-guided optimization of biosynthetic pathways. Proc Natl Acad Sci USA 111:17803–17808. https://doi.org/10.1073/pnas.1409523111

    Article  PubMed  CAS  Google Scholar 

  130. Ravcheev DA, Khoroshkin MS, Laikova ON, Tsoy OV, Sernova NV, Petrova SA, Rakhmaninova AB, Novichkov PS, Gelfand MS, Rodionov DA (2014) Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol 5:294. https://doi.org/10.3389/fmicb.2014.00294

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ravikumar S, Baylon MG, Park SJ, J-i Choi (2017) Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 16:62. https://doi.org/10.1186/s12934-017-0675-z

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ravikumar S, Ganesh I, Maruthamuthu MK, Hong SH (2015) Engineering Escherichia coli to sense acidic amino acids by introduction of a chimeric two-component system. Korean J Chem Eng 32:2073–2077. https://doi.org/10.1007/s11814-015-0024-z

    Article  CAS  Google Scholar 

  133. Robinson CJ, Medina-Stacey D, Wu MC, Vincent HA, Micklefield J (2016) Rewiring riboswitches to create new genetic circuits in bacteria. Methods Enzymol 575:319–348. https://doi.org/10.1016/bs.mie.2016.02.022

    Article  PubMed  CAS  Google Scholar 

  134. Robinson CJ, Vincent HA, Wu M-C, Lowe PT, Dunstan MS, Leys D, Micklefield J (2014) Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. J Am Chem Soc 136:10615–10624. https://doi.org/10.1021/ja502873j

    Article  PubMed  CAS  Google Scholar 

  135. Rogers JK, Church GM (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA 113:2388–2393. https://doi.org/10.1073/pnas.1600375113

    Article  PubMed  CAS  Google Scholar 

  136. Rogers JK, Guzman CD, Taylor ND, Raman S, Anderson K, Church GM (2015) Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res 43:7648–7660. https://doi.org/10.1093/nar/gkv616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Rogers JK, Taylor ND, Church GM (2016) Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84–91. https://doi.org/10.1016/j.copbio.2016.03.005

    Article  PubMed  CAS  Google Scholar 

  138. Romanini DW, Peralta-Yahya P, Mondol V, Cornish VW (2012) A heritable recombination system for synthetic Darwinian evolution in yeast. ACS Synth Biol 1:602. https://doi.org/10.1021/sb3000904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Saeki K, Tominaga M, Kawai-Noma S, Saito K, Umeno D (2016) Rapid diversification of BetI-based transcriptional switches for the control of biosynthetic pathways and genetic circuits. ACS Synth Biol 5:1201–1210. https://doi.org/10.1021/acssynbio.5b00230

    Article  PubMed  CAS  Google Scholar 

  140. San Martín A, Ceballo S, Baeza-Lehnert F, Lerchundi R, Valdebenito R, Contreras-Baeza Y, Alegría K, Barros LF (2014) Imaging mitochondrial flux in single cells with a FRET sensor for pyruvate. PLoS One 9:e85780. https://doi.org/10.1371/journal.pone.0085780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Sandoval NR, Kim JY, Glebes TY, Reeder PJ, Aucoin HR, Warner JR, Gill RT (2012) Strategy for directing combinatorial genome engineering in Escherichia coli. Proc Natl Acad Sci USA 109:10540–10545. https://doi.org/10.1073/pnas.1206299109

    Article  PubMed  Google Scholar 

  142. Schendzielorz G, Dippong M, Grünberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21. https://doi.org/10.1021/sb400059y

    Article  PubMed  CAS  Google Scholar 

  143. Schujman GE, Guerin M, Buschiazzo A, Schaeffer F, Llarrull LI, Reh G, Vila AJ, Alzari PM, De Mendoza D (2006) Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO J 25:4074–4083. https://doi.org/10.1038/sj.emboj.7601284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Schujman GE, Paoletti L, Grossman AD, de Mendoza D (2003) FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4:663–672. https://doi.org/10.1016/S1534-5807(03)00123-0

    Article  PubMed  CAS  Google Scholar 

  145. Selvamani V, Ganesh I, Mk Maruthamuthu, Eom GT, Hong SH (2017) Engineering chimeric two-component system into Escherichia coli from Paracoccus denitrificans to sense methanol. Biotechnol Bioprocess Eng 22:225–230. https://doi.org/10.1007/s12257-016-0484-y

    Article  CAS  Google Scholar 

  146. Seo SW, Kim D, Latif H, O’Brien EJ, Szubin R, Palsson BO (2014) Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat Commun 5:4910. https://doi.org/10.1038/ncomms5910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Shi S, Choi YW, Zhao H, Tan MH, Ang EL (2017) Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.06.114 (In press)

    Article  PubMed  Google Scholar 

  148. Si T, Luo Y, Bao Z, Zhao H (2014) RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol 4:283–291. https://doi.org/10.1021/sb500074a

    Article  PubMed  CAS  Google Scholar 

  149. Siedler S, Schendzielorz G, Binder S, Eggeling L, Bringer S, Bott M (2014) SoxR as a single-cell biosensor for NADPH-consuming enzymes in Escherichia coli. ACS Synth Biol 3:41. https://doi.org/10.1021/sb400110j

    Article  PubMed  CAS  Google Scholar 

  150. Silva-Rocha R, De LV (2012) Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor. Mol BioSyst 8:1950–1957. https://doi.org/10.1039/c2mb25030f

    Article  PubMed  CAS  Google Scholar 

  151. Skjoedt ML, Snoek T, Kildegaard KR, Arsovska D, Eichenberger M, Goedecke TJ, Rajkumar AS, Zhang J, Kristensen M, Lehka BJ (2016) Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 12:951–958. https://doi.org/10.1038/nchembio.2177

    Article  PubMed  CAS  Google Scholar 

  152. Smolke CD, Silver PA (2011) Informing biological design by integration of systems and synthetic biology. Cell 144:855–859. https://doi.org/10.1016/j.cell.2011.02.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Soma Y, Hanai T (2015) Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng 30:7–15. https://doi.org/10.1016/j.ymben.2015.04.005

    Article  PubMed  CAS  Google Scholar 

  154. Steffen V, Otten J, Engelmann S, Radek A, Limberg M, Koenig BW, Noack S, Wiechert W, Pohl M (2016) A toolbox of genetically encoded FRET-based biosensors for rapid l-lysine analysis. Sensors 16:1604. https://doi.org/10.3390/s16101604

    Article  CAS  Google Scholar 

  155. Su Y, Hickey SF, Keyser SG, Hammond MC (2016) In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for s-adenosyl-l-homocysteine (SAH). J Am Chem Soc 138:7040–7047. https://doi.org/10.1021/jacs.6b01621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Suess B, Fink B, Berens C, Stentz R, Hillen W (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614. https://doi.org/10.1093/nar/gkh321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sun L, Zhang H, Yuan H, Tu R, Wang Q, Ma Y (2013) A double-enzyme-coupled assay for high-throughput screening of succinic acid-producing strains. J Appl Microbiol 114:1696–1701. https://doi.org/10.1111/jam.12175

    Article  PubMed  CAS  Google Scholar 

  158. Szmidt-Middleton HL, Ouellet M, Adams PD, Keasling JD, Mukhopadhyay A (2013) Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chem Eng Sci 103:68–73. https://doi.org/10.1016/j.ces.2013.06.044

    Article  CAS  Google Scholar 

  159. Tang S-Y, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135:10099–10103. https://doi.org/10.1021/ja402654z

    Article  PubMed  CAS  Google Scholar 

  160. Taylor ND, Garruss AS, Moretti R, Chan S, Arbing MA, Cascio D, Rogers JK, Isaacs FJ, Kosuri S, Baker D, Fields S, Church GM, Raman S (2016) Engineering an allosteric transcription factor to respond to new ligands. Nat Meth 13:177–183. https://doi.org/10.1038/nmeth.3696

    Article  CAS  Google Scholar 

  161. Teo WS, Chang MW (2015) Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae. Biotechnol J 10:315–322. https://doi.org/10.1002/biot.201400159

    Article  PubMed  CAS  Google Scholar 

  162. Teo WS, Hee KS, Chang MW (2013) Bacterial FadR and synthetic promoters function as modular fatty acid sensor-regulators in Saccharomyces cerevisiae. Eng Life Sci 13:456–463. https://doi.org/10.1002/elsc.201200113

    Article  CAS  Google Scholar 

  163. Topp S, Gallivan JP (2007) Guiding bacteria with small molecules and RNA. J Am Chem Soc 129:6807–6811. https://doi.org/10.1021/ja0692480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Toussaint M, Bontemps C, Besserer A, Hotel L, Gérardin P, Leblond P (2016) Whole-cell biosensor of cellobiose and application to wood decay detection. J Biotechnol 239:39–46. https://doi.org/10.1016/j.jbiotec.2016.10.003

    Article  PubMed  CAS  Google Scholar 

  165. Umeyama T, Okada S, Ito T (2013) Synthetic gene circuit-mediated monitoring of endogenous metabolites: identification of GAL11 as a novel multicopy enhancer of S-adenosylmethionine level in yeast. ACS Synth Biol 2:425–430. https://doi.org/10.1021/sb300115n

    Article  PubMed  CAS  Google Scholar 

  166. Venayak N, Anesiadis N, Cluett WR, Mahadevan R (2015) Engineering metabolism through dynamic control. Curr Opin Biotechnol 34:142–152. https://doi.org/10.1016/j.copbio.2014.12.022

    Article  PubMed  CAS  Google Scholar 

  167. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H (2016) Recent advances in biosensor technology for potential applications—an overview. Front Bioeng Biotechnol 4:11. https://doi.org/10.3389/fbioe.2016.00011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Vinkenborg JL, Karnowski N, Famulok M (2011) Aptamers for allosteric regulation. Nat Chem Biol 7:519–527. https://doi.org/10.1038/nchembio.609

    Article  PubMed  CAS  Google Scholar 

  169. Wachsmuth M, Findei㟠S, Weissheimer N, Stadler PF, MãRl M (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41:2541–2551. https://doi.org/10.1093/nar/gks1330

    Article  PubMed  CAS  Google Scholar 

  170. Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709. https://doi.org/10.1038/nature12946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, Stephanopoulos G (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32:473–478. https://doi.org/10.1038/nbt.2857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460:894–898. https://doi.org/10.1038/nature08187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Wang J, Gao D, Yu X, Li W, Qi Q (2015) Evolution of a chimeric aspartate kinase for l-lysine production using a synthetic RNA device. Appl Microbiol Biotechnol 99:8527–8536. https://doi.org/10.1007/s00253-015-6615-0

    Article  PubMed  CAS  Google Scholar 

  174. Wang M, Li S, Zhao H (2016) Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol Bioeng 113:206–215. https://doi.org/10.1002/bit.25676

    Article  PubMed  CAS  Google Scholar 

  175. Wang XC, Wilson SC, Hammond MC (2016) Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Res 44:e139. https://doi.org/10.1093/nar/gkw580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y (2016) Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J Ind Microbiol Biotechnol 43:1227–1235. https://doi.org/10.1007/s10295-016-1803-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Watstein DM, McNerney MP, Styczynski MP (2015) Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor. Metab Eng 31:171–180. https://doi.org/10.1016/j.ymben.2015.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Williams TC, Averesch NJH, Winter G, Plan MR, Vickers CE, Nielsen LK, Krömer JO (2015) Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng 29:124–134. https://doi.org/10.1016/j.ymben.2015.03.008

    Article  PubMed  CAS  Google Scholar 

  179. Williams TC, Espinosa MI, Nielsen LK, Vickers CE (2015) Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae. Microb Cell Fact 14:43. https://doi.org/10.1186/s12934-015-0223-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wu W, Zhang L, Yao L, Tan X, Liu X, Lu X (2015) Genetically assembled fluorescent biosensor for in situ detection of bio-synthesized alkanes. Sci Rep 5:10907. https://doi.org/10.1038/srep10907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Xiao Y, Bowen CH, Liu D, Zhang F (2016) Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12:339. https://doi.org/10.1038/nchembio.2046

    Article  PubMed  CAS  Google Scholar 

  182. Xiao Y, Jiang W, Zhang F (2017) Developing a genetically encoded, cross-species biosensor for detecting ammonium and regulating biosynthesis of cyanophycin. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00069 (In press)

    Article  PubMed  Google Scholar 

  183. Xie W, Lv X, Ye L, Zhou P, Yu H (2015) Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng 30:69–78. https://doi.org/10.1016/j.ymben.2015.04.009

    Article  PubMed  CAS  Google Scholar 

  184. Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8. https://doi.org/10.1016/j.ymben.2014.11.007

    Article  PubMed  CAS  Google Scholar 

  185. Xiu Y, Jang S, Jones JA, Zill NA, Linhardt RJ, Yuan Q, Jung GY, Koffas MAG (2017) Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol Bioeng 114:2235–2244. https://doi.org/10.1002/bit.26340

    Article  PubMed  CAS  Google Scholar 

  186. Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci USA 111:11299–11304. https://doi.org/10.1073/pnas.1406401111

    Article  PubMed  CAS  Google Scholar 

  187. Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MA (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587. https://doi.org/10.1016/j.ymben.2011.06.008

    Article  PubMed  CAS  Google Scholar 

  188. Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MAG (2014) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in E. coli. ACS Chem Biol 9:451–458. https://doi.org/10.1021/cb400623m

    Article  PubMed  CAS  Google Scholar 

  189. Yang J, Bowser MT (2013) Capillary electrophoresis–SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target. Anal Chem 85:1525–1530. https://doi.org/10.1021/ac302721j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Yang J, Seo SW, Jang S, Shin SI, Lim CH, Roh TY, Jung GY (2013) Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun 4:1413. https://doi.org/10.1038/ncomms2404

    Article  PubMed  CAS  Google Scholar 

  191. Yang P, Wang J, Pang Q, Zhang F, Wang J, Wang Q, Qi Q (2017) Pathway optimization and key enzyme evolution of N-acetylneuraminate biosynthesis using an in vivo aptazyme-based biosensor. Metab Eng 43:21–28. https://doi.org/10.1016/j.ymben.2017.08.001

    Article  PubMed  CAS  Google Scholar 

  192. Yin X, Shin H-D, Li J, Du G, Liu L, Chen J (2017) Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger. Appl Environ Microbiol 83:e03216–e03222. https://doi.org/10.1128/aem.03222-16

    Article  CAS  Google Scholar 

  193. You M, Litke JL, Jaffrey SR (2015) Imaging metabolite dynamics in living cells using a Spinach-based riboswitch. Proc Natl Acad Sci USA 112:E2756–E2765. https://doi.org/10.1073/pnas.1504354112

    Article  PubMed  CAS  Google Scholar 

  194. Younger AK, Dalvie NC, Rottinghaus AG, Leonard JN (2016) Engineering modular biosensors to confer metabolite-responsive regulation of transcription. ACS Synth Biol 6:311–325. https://doi.org/10.1021/acssynbio.6b00184

    Article  PubMed  CAS  Google Scholar 

  195. Yuan J, Ching C (2015) Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Fact 14:38. https://doi.org/10.1186/s12934-015-0220-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359. https://doi.org/10.1038/nbt.2149

    Article  PubMed  CAS  Google Scholar 

  197. Zhang J, Barajas JF, Burdu M, Ruegg TL, Dias B, Keasling JD (2017) Development of a transcription factor-based lactam biosensor. ACS Synth Biol 6:439–445. https://doi.org/10.1021/acssynbio.6b00136

    Article  PubMed  CAS  Google Scholar 

  198. Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8. https://doi.org/10.1016/j.cbpa.2015.05.013

    Article  PubMed  CAS  Google Scholar 

  199. Zhang J, Sonnenschein N, Pihl TPB, Pedersen KR, Jensen MK, Keasling JD (2016) Engineering an NADPH/NADP+ redox biosensor in yeast. ACS Synth Biol 5:1546–1556. https://doi.org/10.1021/acssynbio.6b00135

    Article  PubMed  CAS  Google Scholar 

  200. Zhou L, Zeng A (2015) Engineering a Lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 4:1335–1340. https://doi.org/10.1021/acssynbio.5b00075

    Article  PubMed  CAS  Google Scholar 

  201. Zhou L, Zeng A (2015) Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 4:729–734. https://doi.org/10.1021/sb500332c

    Article  PubMed  CAS  Google Scholar 

  202. Zhou S, Ainala SK, Seol E, Nguyen TT, Park S (2015) Inducible gene expression system by 3-hydroxypropionic acid. Biotechnol Biofuels 8:169. https://doi.org/10.1186/s13068-015-0353-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Zhu X, Wang X, Zhang C, Wang X, Gu Q (2015) A riboswitch sensor to determine vitamin B12 in fermented foods. Food Chem 175:523–528. https://doi.org/10.1016/j.foodchem.2014.11.163

    Article  PubMed  CAS  Google Scholar 

  204. Zorawski M, Shaffer J, Velasquez E, Liu JM (2016) Creating a riboswitch-based whole-cell biosensor for bisphenol A. FASEB J 30(805):3

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding supports from the State Key Laboratory of Microbial Technology Open Projects Fund in China (Project no. M2017-02 to S.S.), the National Research Foundation Singapore (NRF2013-THE001-095 to E.L.A.), and the Visiting Investigator Programme of Agency for Science, Technology, and Research, Singapore and US Department of Energy (DE-SC0018260 to H.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ee Lui Ang or Huimin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Ang, E.L. & Zhao, H. In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol 45, 491–516 (2018). https://doi.org/10.1007/s10295-018-2004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2004-x

Keywords

Navigation