Skip to main content
Log in

Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In an attempt to develop a high-throughput screening system for screening microorganisms which produce high amounts of malate, a MalKZ chimeric HK-based biosensor was constructed. Considering the sequence similarity among Escherichia coli (E. coli) MalK with Bacillus subtilis MalK and E. coli DcuS, the putative sensor domain of MalK was fused with the catalytic domain of EnvZ. The chimeric MalK/EnvZ TCS induced the ompC promoter through the cognate response regulator, OmpR, in response to extracellular malate. Real-time quantitative PCR and GFP fluorescence studies showed increased ompC gene expression and GFP fluorescence as malate concentration increased. By using this strategy, various chimeric TCS-based bacteria biosensors can be constructed, which may be used for the development of biochemical-producing recombinant microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alteri CJ, Himpsl SD, Engstrom MD, Mobley HLT (2012) Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis. mBio 3 (pii: 00365-12)

  2. Rosenberg M, Miková H, Krištofíková L (1999) Formation of l-malic acid by yeasts of the genus Dipodascus. Lett Appl Microbiol 29(4):221–223

    Article  CAS  Google Scholar 

  3. Bressler E, Pines O, Goldberg I, Braun S (2002) Conversion of fumaric acid to l-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnol Progr 18(3):445–450

    Article  CAS  Google Scholar 

  4. Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) l-malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol 77(2):427–434

    Article  CAS  Google Scholar 

  5. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26(6):369–376

    Article  CAS  Google Scholar 

  6. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  Google Scholar 

  7. Golby P, Davies S, Kelly DJ, Guest JR, Andrews SC (1999) Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli. J Bacteriol 181(4):1238–1248

    CAS  Google Scholar 

  8. Zientz E, Bongaerts J, Unden G (1998) Fumarate regulation of gene expression in Escherichia coli by the dcuSR (dcuSR Genes) two-component regulatory system. J Bacteriol 180(20):5421–5425

    CAS  Google Scholar 

  9. Baumgartner JW, Kim C, Brissette RE, Inouye M, Park C, Hazelbauer GL (1994) Transmembrane signalling by a hybrid protein: communication from the domain of chemoreceptor Trg that recognizes sugar-binding proteins to the kinase/phosphatase domain of osmosensor EnvZ. J Bacteriol 176(4):1157–1163

    CAS  Google Scholar 

  10. Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438(7067):441–442

    Article  CAS  Google Scholar 

  11. Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S (2005) NMR structure of mistic, a membrane-integrating protein for membrane protein expression. Science 307(5713):1317–1321

    Article  CAS  Google Scholar 

  12. Gerken H, Misra R (2010) MzrA-EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon. J Bacteriol 192(23):6271–6278

    Article  CAS  Google Scholar 

  13. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    Article  CAS  Google Scholar 

  14. Ayyadurai N, Neelamegam R, Nagasundarapandian S, Edwardraja S, Park H, Lee S, Yoo T, Yoon H, Lee S-G (2009) Importance of expression system in the production of unnatural recombinant proteins in Escherichia coli. Biotechnol Bioproc E 14(3):257–265

    Article  CAS  Google Scholar 

  15. Eleaume H, Jabbouri S (2004) Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Meth 59(3):363–370

    Article  CAS  Google Scholar 

  16. Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev 100(7):2649–2678

    Article  CAS  Google Scholar 

  17. Ganesh I, Ravikumar S, Lee S, Park S, Hong S (2013) Engineering fumarate sensing Escherichia coli based on novel chimeric two component system. J Biotechnol 168:560–566

    Article  CAS  Google Scholar 

  18. Doan T, Servant P, Tojo S, Yamaguchi H, Lerondel G, Yoshida K-I, Fujita Y, Aymerich S (2003) The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology 149(9):2331–2343

    Article  CAS  Google Scholar 

  19. Kühnau S, Reyes M, Sievertsen A, Shuman HA, Boos W (1991) The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. J Bacteriol 173(7):2180–2186

    Google Scholar 

  20. Reyes M, Shuman HA (1988) Overproduction of MalK protein prevents expression of the Escherichia coli mal regulon. J Bacteriol 170(10):4598–4602

    CAS  Google Scholar 

  21. Fung E, Wong WW, Suen JK, Bulter T, Lee S-g, Liao JC (2005) A synthetic gene-metabolic oscillator. Nature 435(7038):118–122

    Article  CAS  Google Scholar 

  22. Bulter T, Lee S-G, Wong WW, Fung E, Connor MR, Liao JC (2004) Design of artificial cell–cell communication using gene and metabolic networks. Proc Natl Acad Sci USA 101(8):2299–2304

    Article  CAS  Google Scholar 

  23. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1):33–38

    Article  CAS  Google Scholar 

  24. Siryaporn A, Goulian M (2008) Cross-talk suppression between the CpxA–CpxR and EnvZ–OmpR two-component systems in E. coli. Mol Microbiol 70(2):494–506

    Article  CAS  Google Scholar 

  25. May T, Okabe S (2008) Escherichia coli harboring a natural incf conjugative f plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 190(22):7479–7490

    Article  CAS  Google Scholar 

  26. Rogov VV, Rogova NY, Bernhard F, Koglin A, Löhr F, Dötsch V (2006) A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains. JMol Biol 364(1):68–79

    Article  CAS  Google Scholar 

  27. Rizk SS, Cuneo MJ, Hellinga HW (2006) Identification of cognate ligands for the Escherichia coli phnD protein product and engineering of a reagentless fluorescent biosensor for phosphonates. Prot Sci 15(7):1745–1751

    Article  CAS  Google Scholar 

  28. Egger LA, Park H, Inouye M (1997) Signal transduction via the histidyl-aspartyl phosphorelay. Genes Cells 2(3):167–184

    Article  CAS  Google Scholar 

  29. FSAaR DL (1994) Signal transduction by the EnvZ-OmpR phopshotransfer system in bacteria. Res Microbiol 145:363–373

    Article  Google Scholar 

  30. Aiba H, Mizuno T (1990) Phosphorylation of a bacterial activator protein, OmpR, by a protein kinase, EnvZ, stimulates the transcription of the ompF and ompC genes in Escherichia coli. FEBS Lett 261(1):19–22

    Article  CAS  Google Scholar 

  31. Forst S, Delgado J, Inouye M (1989) Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci 86(16):6052–6056

    Article  CAS  Google Scholar 

  32. Aiba H, Nakasai F, Mizushima S, Mizuno T (1989) Evidence for the physiological importance of the phosphotransfer between the two regulatory components, EnvZ and OmpR, in osmoregulation in Escherichia coli. JBiol Chem 264(24):14090–14094

    CAS  Google Scholar 

  33. Igo MM, Silhavy TJ (1988) EnvZ, a transmembrane environmental sensor of Escherichia coli K-12, is phosphorylated in vitro. JBacteriol 170(12):5971–5973

    CAS  Google Scholar 

  34. Forst S, Comeau D, Norioka S, Inouye M (1987) Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J Biol Chem 262(34):16433–16438

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant number: PJ00954904), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, I., Ravikumar, S., Yoo, Ik. et al. Construction of malate-sensing Escherichia coli by introduction of a novel chimeric two-component system. Bioprocess Biosyst Eng 38, 797–804 (2015). https://doi.org/10.1007/s00449-014-1321-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1321-3

Keywords

Navigation