Skip to main content

Biosensors for Metabolic Engineering

  • Chapter
  • First Online:
Systems Biology Application in Synthetic Biology

Abstract

With the advent of synthetic biology, it is possible to accelerate metabolic engineering research due to lower cost gene synthesis. In particular, genetically encoded biosensors can be used in synthetic circuits to dynamically respond to metabolites to actuate desired metabolic engineering functions. Biosensors can be employed to target high-producing strains by high-throughput screening, to sense desirable products in selective conditions, and to dynamically control metabolic fluxes. In this chapter, we first describe different types of biosensors (transcription factor-based biosensors, RNA-based biosensors, protein activity-based biosensors, and whole cell biosensors) that have been developed. Next, we describe the application of developed biosensors well-developed methods that are used to develop novel biosensors. Finally, we provide some perspectives on biosensor utilization in metabolic engineering and some potential problems that face this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-PS:

2-Pyrone synthase

acetyl-CoA:

Acetyl coenzyme A

ATF:

Artificial transcription factor

BLA:

β-Lactamase

bPBP:

Bacterial periplasmic binding protein

CIDs:

Chemical inducers of dimerization

DBDs:

DNA-binding domains

ER:

Estrogen receptor

eyfp:

Enhanced yellow fluorescence protein

FACS:

Fluorescence-activated cell sorting

FAEE:

Fatty acid ethyl ester

GC:

Gas chromatography

GFP:

Green fluorescent protein

HHRs:

Hammerhead ribozymes

HMG-CoA:

Hydroxymethylglutaryl-CoA

HPLC:

High-performance liquid chromatography

IPP:

Isopentenyl pyrophosphate

IPTG:

β-D-1-Thiogalactopyranoside

LBD:

Ligand-binding domain

MAGE:

Multiplex automated genome engineering

MBP:

Maltose-binding protein

MRTF:

Metabolite-responsive transcription factor

RBS:

Ribosome binding site

RD:

Regulatory domain

RFP:

Red fluorescent protein

SDS:

Sodium dodecyl sulfate

TAL:

Triacetic acid lactone

TATB:

1,3,5-Triamino-2,4,6-trinitrobenzene

TPP:

Thiamine pyrophosphate

References

  1. Agrawai J (1998) Recent trends in high energy materials. Prog Energ Combust 24(1):1–30

    Article  Google Scholar 

  2. Ansari AZ, Mapp AK (2002) Modular design of artificial transcription factors. Curr Opin Chem Biol 6:765–772

    Article  CAS  PubMed  Google Scholar 

  3. Babiskin AH, Smolke CD (2011) Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules. Nucleic Acids Res 39(12):5299–5311. doi:10.1093/nar/gkr090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzym 327:401–421

    Article  CAS  Google Scholar 

  5. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C (2011) From zero to hero – design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13(2):159–168. doi:10.1016/j.ymben.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Belshaw PJ, Ho SN, Crabtree GR, Schereiber SL (1996) Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A 93(10):4604–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13(5):R40. doi:10.1186/gb-2012-13-5-r40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Broun P (2004) Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol 7(2):202–209. doi:10.1016/j.pbi.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  9. Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A 101(29):10505–10510. doi:10.1073/pnas.0402762101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang AL, Wolf JJ, Smolke CD (2012) Synthetic RNA switches as a tool for temporal and spatial control over gene expression. Curr Opin Biotechnol 23(5):679–688. doi:10.1016/j.copbio.2012.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chou HH, Keasling JD (2013) Programming adaptive control to evolve increased metabolite production. Nat Commun 4:2595. doi:10.1038/ncomms3595

    Article  PubMed  Google Scholar 

  12. Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD (2013) Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31(11):1039–1046. doi:10.1038/nbt.2689

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich JA, Shis DL, Alikhani A, Keasling JD (2013) Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol 2(1):47–58. doi:10.1021/sb300091d

    Article  CAS  PubMed  Google Scholar 

  14. Dixon N, Duncan JN, Geerlings T, Dunstan MS, McCarthy JE, Leys D, Micklefield J (2010) Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A 107(7):2830–2835. doi:10.1073/pnas.0911209107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eckermann S, Schröder G, Schmidt J, Strack D, Edrada RA, Helaiutta Y, Elomaa P, Kotilainen M, Kilpeläinen I, Proksch P, Teeri TH, Schröder J (1998) New pathway to polyketides in plants. Nature 396:387–390. doi:10.1038/24652

    Article  CAS  Google Scholar 

  16. Edwards WR, Busse K, Allemann RK, Jones DD (2008) Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res 36(13), e78. doi:10.1093/nar/gkn363

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 340:818–822

    Article  Google Scholar 

  18. Fiorentino G, Ronca R, Bartolucci S (2009) A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein. Appl Microbiol Biotechnol 82(1):67–77. doi:10.1007/s00253-008-1771-0

    Article  CAS  PubMed  Google Scholar 

  19. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10(6):295–304. doi:10.1016/j.ymben.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  20. Gilardi G (2013) Protein design for biosensors. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin, pp 1979–1987. doi:10.1007/978-3-642-16712-6

    Chapter  Google Scholar 

  21. Gilbert W, Müller-Hill B (1966) Isolation of the Lac repressor. Proc Natl Acad Sci U S A 56(6):1891–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guntas G, Mansell TJ, Kim JR, Ostermeier M (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 102(32):11224–11229. doi:10.1073/pnas.0502673102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11(11):1483–1487. doi:10.1016/j.chembiol.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  24. Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336(1):263–273. doi:10.1016/j.jmb.2003.12.016

    Article  CAS  PubMed  Google Scholar 

  25. Hansen CA, Frost J (2002) Deoxygenation of polyhydroxybenzenes: an alternative strategy for the benzene-free synthesis of aromatic chemicals. J Am Chem Soc 124(21):5926–5927

    Article  CAS  PubMed  Google Scholar 

  26. Joyce GF (2007) Forty years of in vitro evolution. Angew Chem Int Ed Engl 46(34):6420–6436. doi:10.1002/anie.200701369

    Article  CAS  PubMed  Google Scholar 

  27. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195. doi:10.1016/j.ymben.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  28. Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Methods 11(5):499–507. doi:10.1038/nmeth.2918

    Article  CAS  PubMed  Google Scholar 

  29. Liang J, Smolke C (2012) Rational design and tuning of ribozyme-based devices. Methods Mol Biol 848:439–454

    Article  CAS  PubMed  Google Scholar 

  30. Liu D, Evans T, Zhang F (2015) Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 31:35–43. doi:10.1016/j.ymben.2015.06.008

    Article  PubMed  Google Scholar 

  31. Liu D, Xiao Y, Evans BS, Zhang F (2015) Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator. ACS Synth Biol 4(2):132–140. doi:10.1021/sb400158w

    Article  CAS  PubMed  Google Scholar 

  32. Ma SM, Li JW, Choi J, Zhou H, Lee KM, Moorthie VA, Xie X, Kealey JT, Da Silva NA, Vederas JC, Tang Y (2009) Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326:589–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meinhardt S, Manley MW Jr, Becker NA, Hessman JA, Maher LJ 3rd, Swint-Kruse L (2012) Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res 40(21):11139–11154. doi:10.1093/nar/gks806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Michener JK, Smolke CD (2012) High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metab Eng 14(4):306–316. doi:10.1016/j.ymben.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  35. Michener JK, Thodey K, Liang JC, Smolke CD (2012) Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 14(3):212–222. doi:10.1016/j.ymben.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  36. Mukhopadhyay A (2015) Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol 23(8):498–508. doi:10.1016/j.tim.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  37. Muranaka N, Sharma V, Nomura Y, Yokobayashi Y (2009) An efficient platform for genetic selection and screening of gene switches in Escherichia coli. Nucleic Acids Res 37(5), e39. doi:10.1093/nar/gkp039

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118. doi:10.1146/annurev.biophys.34.040204.144700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Penchovsky R (2013) Computational design and biosensor applications of small molecule-sensing allosteric ribozymes. Biomacromolecules 14(4):1240–1249. doi:10.1021/bm400299a

    Article  CAS  PubMed  Google Scholar 

  40. Penchovsky R (2014) Computational design of allosteric ribozymes as molecular biosensors. Biotechnol Adv 32(5):1015–1027. doi:10.1016/j.biotechadv.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Penchovsky R, Breaker RR (2005) Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes. Nat Biotechnol 23(11):1424–1433. doi:10.1038/nbt1155

    Article  CAS  PubMed  Google Scholar 

  42. Pfleger BF, Pitera DJ, Newman JD, Martin VJ, Keasling JD (2007) Microbial sensors for small molecules: development of a mevalonate biosensor. Metab Eng 9(1):30–38. doi:10.1016/j.ymben.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  43. Polizzi KM, Kontoravdi C (2015) Genetically-encoded biosensors for monitoring cellular stress in bioprocessing. Curr Opin Biotechnol 31:50–56. doi:10.1016/j.copbio.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  44. Purcell O, Peccoud J, Lu TK (2014) Rule-based design of synthetic transcription factors in eukaryotes. ACS Synth Biol 3(10):737–744. doi:10.1021/sb400134k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Raman S, Rogers JK, Taylor ND, Church GM (2014) Evolution-guided optimization of biosynthetic pathways. Proc Natl Acad Sci U S A 111(50):17803–17808. doi:10.1073/pnas.1409523111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reed B, Blazeck J, Alper H (2012) Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes. J Biotechnol 158(3):75–79. doi:10.1016/j.jbiotec.2012.01.028

    Article  CAS  PubMed  Google Scholar 

  47. Riccardi C, Di Filippo P, Pomata D, Incoronato F, Di Basilio M, Papini MP, Spicaglia S (2008) Characterization and distribution of petroleum hydrocarbons and heavy metals in groundwater from three Italian tank farms. Sci Total Environ 393(1):50–63. doi:10.1016/j.scitotenv.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  48. Richardson M, Pohl N (1999) Tolerance and specificity of recombinant 6-methylsalicyclic acid synthase. Metab Eng 1:180–187

    Article  CAS  PubMed  Google Scholar 

  49. Ritcher F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS One 6(5):e19230–e19242. doi:10.1371/journal.pone.0019230.g001

    Article  Google Scholar 

  50. Sadeghi SJ, Meirinhos R, Catucci G, Dodhia VR, Nardo GD, Gilardi G (2010) Direct electrochemistry of drug metabolizing human flavin-containing monooxygenase: electrochemical turnover of benzydamine and tamoxifen. J Am Chem Soc 132:458–459. doi:10.1021/ja909261p

    Article  CAS  PubMed  Google Scholar 

  51. Santos CN, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13(4):392–400. doi:10.1016/j.ymben.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  52. Schleif R, Lis J (1967) The regulatory region of the L-arabinose operon: a physical, genetic and physiological study. J Mol Biol 95:417–431

    Article  Google Scholar 

  53. Schwimmer LJ, Rohatgi P, Azizi B, Seley KL, Doyle DF (2004) Creation and discovery of ligand-receptor pairs for transcriptional control with small molecules. Proc Natl Acad Sci U S A 101(41):14707–14712. doi:10.1073/pnas.0400884101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shis DL, Hussain F, Meinhardt S, Swint-Kruse L, Bennett MR (2014) Modular, multi-input transcriptional logic gating with orthogonal LacI/GalR family chimeras. ACS Synth Biol 3(9):645–651. doi:10.1021/sb500262f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Skretas G, Wood DW (2005) A bacterial biosensor of endocrine modulators. J Mol Biol 349(3):464–474. doi:10.1016/j.jmb.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  56. Skretas G, Wood DW (2005) Regulation of protein activity with small-molecule-controlled inteins. Protein Sci 14(2):523–532. doi:10.1110/ps.04996905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sowa SW, Gelderman G, Contreras LM (2015) Advances in synthetic dynamic circuits design: using novel synthetic parts to engineer new generations of gene oscillations. Curr Opin Biotechnol 36:161–167. doi:10.1016/j.copbio.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  58. Stephanopoulos G (2012) Synthetic biology and metabolic engineering. ACS Synth Biol 1(11):514–525. doi:10.1021/sb300094q

    Article  CAS  PubMed  Google Scholar 

  59. Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4:453–459

    Article  CAS  PubMed  Google Scholar 

  60. Tang SY, Cirino PC (2011) Design and application of a mevalonate-responsive regulatory protein. Angew Chem Int Edit 50(5):1084–1086. doi:10.1002/anie.201006083

    Article  CAS  Google Scholar 

  61. Tang SY, Fazelinia H, Cirino PC (2008) AraC regulatory protein mutants with altered effector specificity. J Am Chem Soc 130:5267–5271

    Article  CAS  PubMed  Google Scholar 

  62. Tang SY, Qian S, Akinterinwa O, Frei CS, Gredell JA, Cirino PC (2013) Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135(27):10099–10103. doi:10.1021/ja402654z

    Article  CAS  PubMed  Google Scholar 

  63. Tepper N, Tomer S (2011) Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments. PLoS ONE 6, e16274. doi:10.1371/journal.pone.0016274.g001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Topp S, Reynoso CM, Seeliger JC, Goldlust IS, Desai SK, Murat D, Shen A, Puri AW, Komeili A, Bertozzi CR, Scott JR, Gallivan JP (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76(23):7881–7884. doi:10.1128/AEM.01537-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trausch JJ, Ceres P, Reyes FE, Batey RT (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19(10):1413–1423. doi:10.1016/j.str.2011.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turner AP, Karube I, Wilson GS (1986) Biosensors fundamentals and applications. Oxford University, Oxford

    Google Scholar 

  67. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109:2070–2081. doi:10.1002/bit.24486/abstract

    Article  PubMed  Google Scholar 

  68. Vandenberg E, Brown R, Krull U (1994) Immobilization of proteins for biosensors development. In: Veliky IA, McLean R (eds) Immobilized biosystems theory and practical applications. Springer, Dordrecht, pp 129–231

    Chapter  Google Scholar 

  69. Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci U S A 107(14):6204–6209. doi:10.1073/pnas.0914423107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wachsmuth M, Findeiss S, Weissheimer N, Stadler PF, Morl M (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41(4):2541–2551. doi:10.1093/nar/gks1330

    Article  CAS  PubMed  Google Scholar 

  71. Wang M, Si T, Zhao H (2012) Biocatalyst development by directed evolution. Bioresour Technol 115:117–125. doi:10.1016/j.biortech.2012.01.054

    Article  CAS  PubMed  Google Scholar 

  72. Weigand JE, Suess B (2007) Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res 35(12):4179–4185. doi:10.1093/nar/gkm425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M (2014) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111(31):11299–11304. doi:10.1073/pnas.1406401111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MA (2014) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 9(2):451–458. doi:10.1021/cb400623m

    Article  CAS  PubMed  Google Scholar 

  75. Yan Q, Fong SS (2015) Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour Bioprocess 2:31–39. doi:10.1186/s40643-015-0057-5

  76. Yuan L, Grotewold E (2015) Metabolic engineering to enhance the value of plants as green factories. Metab Eng 27:83–91. doi:10.1016/j.ymben.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  77. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354–359. doi:10.1038/nbt.2149

    Article  CAS  PubMed  Google Scholar 

  78. Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS (2015) Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol 29:49–57. doi:10.1016/j.cbpa.2015.09.008

    Article  PubMed  Google Scholar 

  79. Zhou LB, Zeng AP (2015) Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 4(6):729–734. doi:10.1021/sb500332c

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen S. Fong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Yan, Q., Fong, S.S. (2016). Biosensors for Metabolic Engineering. In: Singh, S. (eds) Systems Biology Application in Synthetic Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2809-7_5

Download citation

Publish with us

Policies and ethics