Skip to main content

Advertisement

Log in

Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-d-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723. doi:10.1038/nrmicro2186

    Article  CAS  PubMed  Google Scholar 

  2. Andersson E, Harvey S (2006) Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass. Energy (Oxford, UK) 32:399–405. doi:10.1016/j.energy.2006.06.021

  3. Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35. doi:10.1016/j.fuel.2010.07.015

    Article  CAS  Google Scholar 

  4. Antal MJ Jr, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717. doi:10.1021/ie00042a001

    Article  CAS  Google Scholar 

  5. Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2:393–414. doi:10.1002/bbb.92

    Article  CAS  Google Scholar 

  6. Badger PC (2002) Ethanol from cellulose: a general review. In: Janick JWA (ed) Trends in new crops and new uses. American Society for Horticultural Science (ASHS) Press, USA

    Google Scholar 

  7. Balser K, Hoppe L, Eicher T, Wandel M, Astheimer H-J, Steinmeier H, Allen JM (2004) Cellulose esters. In: Ullmann’s encyclopedia of industrial chemistry

  8. Basri NH, Deraman M, Kanwal S, Talib IA, Manjunatha JG, Aziz AA, Farma R (2013) Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass Bioenergy 59:370–379. doi:10.1016/j.biombioe.2013.08.035

    Article  CAS  Google Scholar 

  9. Belli G, Gari E, Aldea M, Herrero E (2001) Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol 39:1022–1035. doi:10.1046/j.1365-2958.2001.02297.x

    Article  CAS  PubMed  Google Scholar 

  10. Bennett N (2006) Extraction, hydrolysis, and fermentation of levoglucosan derived from pyrolysis oil. Master of Applied Science thesis, Department of Chemical and Biological Engineering, University of British Columbia

  11. Bennett NM, Helle SS, Duff SJB (2009) Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresour Technol 100:6059–6063. doi:10.1016/j.biortech.2009.06.067

    Article  CAS  PubMed  Google Scholar 

  12. Bertero M, de la Puente G, Sedran U (2012) Fuels from bio-oils: bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95:263–271. doi:10.1016/j.fuel.2011.08.041

    Article  CAS  Google Scholar 

  13. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554. doi:10.1039/b922014c

    Article  CAS  Google Scholar 

  14. Bridgwater A (2007) The production of biofuels and renewable chemicals by fast pyrolysis of biomass. Int J Global Energy Issues 27:160–203

    Article  Google Scholar 

  15. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493. doi:10.1016/S0146-6380(99)00120-5

    Article  CAS  Google Scholar 

  16. Bridgwater AV, Peacocke GVC (1999) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73. doi:10.1016/S1364-0321(99)00007-6

    Article  Google Scholar 

  17. Brown RC (2007) Hybrid thermochemical/biological processing: putting the cart before the horse? Appl Biochem Biotechnol 137–140:947–956

    PubMed  Google Scholar 

  18. Brown RC, Radlein D, Piskorz J (1999:2001) Pretreatment processes to increase pyrolytic yield of levoglucosan from herbaceous feedstocks. ACS Symposium Series. American Chemical Society, Washington, DC, pp 123–132

  19. Chan JKS, Duff SJB (2010) Methods for mitigation of bio-oil extract toxicity. Bioresour Technol 101:3755–3759. doi:10.1016/j.biortech.2009.12.054

    Article  CAS  PubMed  Google Scholar 

  20. Chang S, Zhao L, Timilsina GR, Zhang X (2012) Biofuels development in china: technology options and policies needed to meet the 2020 target. Energy Policy 51:64–79

    Article  Google Scholar 

  21. Chen J, Henson MA, Gomez JA, Hoffner K, Barton PI (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8:89

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Cheng S, Zhu S (2009) Lignocellulosic feedstock biorefinery—the future of the chemical and energy industry. BioResources 4:456–457

    CAS  Google Scholar 

  23. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51:1412–1421. doi:10.1016/j.enconman.2010.01.015

    Article  CAS  Google Scholar 

  24. Cheung H, Tanke RS, Torrence GP (2011) Acetic acid. In: Ullmann’s encyclopedia of industrial chemistry

  25. Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227. doi:10.1016/j.biortech.2013.09.138

    Article  CAS  PubMed  Google Scholar 

  26. Chi Z, Zheng Y, Ma J, Chen S (2011) Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int J Hydrog Energy 36:9542–9550. doi:10.1016/j.ijhydene.2011.04.124

    Article  CAS  Google Scholar 

  27. Chinese Academy of Engineering (2011) Medium and long term energy development strategy in China: electricity, oil and gas, nuclear and environment, vol 1. Science Press, Beijing

  28. Christophe G, Deo JL, Kumar V, Nouaille R, Fontanille P, Larroche C (2012) Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Appl Biochem Biotechnol 167:1270–1279. doi:10.1007/s12010-011-9507-5

    Article  CAS  PubMed  Google Scholar 

  29. Clark HJ, Deswarte EIF (eds) (2008) The Biorefinery concept—an integrated approach. Wiley, New York

  30. Clark JH, Deswarte F (2008) Introduction to chemicals from biomass. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  31. Coyle WT (2007) The future of biofuels: a global perspective. USDA Economic Research Service

  32. Dai J, Yu Z, He Y, Zhang L, Bai Z, Dong Z, Du Y, Zhang H (2009) Cloning of a novel levoglucosan kinase gene from Lipomyces starkeyi and its expression in Escherichia coli. World J Microbiol Biotechnol 25:1589–1595. doi:10.1007/s11274-009-0048-9

    Article  CAS  Google Scholar 

  33. Daniell J, Kopke M, Simpson SD (2012) Commercial biomass syngas fermentation. Energies (Basel, Switzerland) 5:5372–5417. doi:10.3390/en5125372

  34. Dasari MA, Kiatsimkul P-P, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231

    Article  CAS  Google Scholar 

  35. de Haan AB, Meindersma GW, Nijenstein J, Vitasari C (2011) A techno-economic evaluation on the feasibility of chemicals from pyrolysis oil. In: The third Nordic wood biorefinery conference, Stockholm, pp 63–68

  36. de Haan AB, Vitasari C, Heeres E, Fele L, Windt M, Tretjak S, Papadopoulou E, Soucaille P, Verderbosch R (2009) Chemicals from the forest bio-oil chain. In: The 2nd Nordic wood biorefinery conference, pp 2–4

  37. Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manag 50:2782–2801. doi:10.1016/j.enconman.2009.06.035

    Article  CAS  Google Scholar 

  38. Demirbas MF, Balat M, Balat H (2009) Potential contribution of biomass to the sustainable energy development. Energy Convers Manag 50:1746–1760. doi:10.1016/j.enconman.2009.03.013

    Article  CAS  Google Scholar 

  39. Di Blasi C (2000) Modelling the fast pyrolysis of cellulosic particles in fluid-bed reactors. Chem Eng Sci 55:5999–6013

    Article  Google Scholar 

  40. Di Blasi C (2008) Modeling of chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90. doi:10.1016/j.pecs.2006.12.001

    Article  CAS  Google Scholar 

  41. Di Blasi C, Signorelli G, Di Russo C, Rea G (1999) Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res 38:2216–2224. doi:10.1021/IE980711U

    Article  Google Scholar 

  42. Diebold JP (1994) A unified, global model for the pyrolysis of cellulose. Biomass Bioenergy 7:75–85. doi:10.1016/0961-9534(94)00039-V

    Article  CAS  Google Scholar 

  43. Diebold JP (2000) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. National Renewable Energy Laboratory, Golden

    Google Scholar 

  44. Diebold JP (2003) A review of the toxicity of biomass pyrolysis liquids formed at low temperatures. In: Fast pyrolysis of biomass: a handbook. CPL Scientific Publishing, Newburry

  45. Diebold JP (2003) A review of the toxicity of biomass pyrolysis liquids formed at low temperatures. In: Bridgwater AV (ed) Fast pyrolysis of biomass: a handbook. CPL Scientific Publishing, Newburry, pp 135–163

    Google Scholar 

  46. Ding M-Z, Wang X, Yang Y, Yuan Y-J (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15:647–654. doi:10.1089/omi.2011.0003

    Article  CAS  PubMed  Google Scholar 

  47. Du J, Liu P, Z-h Liu, D-g Sun, C-y Tao (2010) Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. Ranliao Huaxue Xuebao 38:554–559

    CAS  Google Scholar 

  48. Duarte LC, Carvalheiro F, Neves I, Girio FM (2005) Effects of aliphatic acids, furfural, and phenolic compounds on Debaryomyces hansenii CCMI 941. Appl Biochem Biotechnol 121–124:413–425. doi:10.1385/ABAB:121:1-3:0413

    Article  PubMed  Google Scholar 

  49. Elleuch A, Boussetta A, Yu J, Halouani K, Li Y (2013) Experimental investigation of direct carbon fuel cell fueled by almond shell biochar: part I. Physico-chemical characterization of the biochar fuel and cell performance examination. Int J Hydrog Energy 38:16590–16604. doi:10.1016/j.ijhydene.2013.08.090

    Article  CAS  Google Scholar 

  50. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JG, Ishak MM, Dollah BNM, Hashmi SA (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 132:254–261. doi:10.1016/j.biortech.2013.01.044

    Article  CAS  PubMed  Google Scholar 

  51. Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Systematic changes in gene expression patterns following adaptive evolution in yeast. Proc Natl Acad Sci USA 96:9721–9726. doi:10.1073/pnas.96.17.9721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737. doi:10.1021/ef060097w

    Article  CAS  Google Scholar 

  53. Fontanille P, Kumar V, Christophe G, Nouaille R, Larroche C (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresour Technol 114:443–449. doi:10.1016/j.biortech.2012.02.091

    Article  CAS  PubMed  Google Scholar 

  54. Friedl A (2012) Lignocellulosic biorefinery. Environ Eng Manag J (EEMJ) 11:75–79

    CAS  Google Scholar 

  55. Geddes CC, Peterson JJ, Roslander C, Zacchi G, Mullinnix MT, Shanmugam KT, Ingram LO (2010) Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresour Technol 101:1851–1857. doi:10.1016/j.biortech.2009.09.070

    Article  CAS  PubMed  Google Scholar 

  56. Ghanadzadeh H, Ghanadzadeh A, Sariri R (2004) (Liquid + liquid) equilibria for (water + acetic acid + 2-ethyl-1-hexanol): experimental data and prediction. J Chem Thermodyn 36:1001–1006

    Article  CAS  Google Scholar 

  57. Global ethanol production. http://www.afdc.energy.gov/data/10331. Accessed 9 June 2015

  58. Gonzalez AS, Plaza MG, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J (Amsterdam, The Netherlands) 230:456–465. doi:10.1016/j.cej.2013.06.118

  59. Goodman PA, Li H, Gao Y, Lu YF, Stenger-Smith JD, Redepenning J (2013) Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes. Carbon 55:291–298. doi:10.1016/j.carbon.2012.12.066

    Article  CAS  Google Scholar 

  60. Gordon KF (1953) Distribution coefficients for 2-methyl-l-propanol–water and l-pentanol–water systems. Ind Eng Chem 45:1813–1815

    Article  CAS  Google Scholar 

  61. Hassan E, Abou-Yousef H, Steele P (2013) Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil. Fuel Process Technol 110:65–72. doi:10.1016/j.fuproc.2012.11.003

    Article  CAS  Google Scholar 

  62. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms of resistance of whole cell to toxic organic solvents. Trends Biotechnol 12:409–415. doi:10.1016/0167-7799(94)90029-9

    Article  CAS  Google Scholar 

  63. Helle S, Bennett NM, Lau K, Matsui JH, Duff SJB (2007) A kinetic model for production of glucose by hydrolysis of levoglucosan and cellobiosan from pyrolysis oil. Carbohydr Res 342:2365–2370. doi:10.1016/j.carres.2007.07.016

    Article  CAS  PubMed  Google Scholar 

  64. Helle SS, Lin T, Duff SJB (2008) Optimization of spent sulfite liquor fermentation. Enzyme Microb Technol 42:259–264. doi:10.1016/j.enzmictec.2007.10.004

    Article  CAS  Google Scholar 

  65. Hill J (2007) Environmental costs and benefits of transportation biofuel production from food and lignocellulose-based energy crops. A review. Agron Sustain Dev 27:1–12

    Article  Google Scholar 

  66. Hohmann S (1997) Shaping up: the response of yeast to osmotic stress. In: Hohmann S, Mager WH (eds) Yeast stress responses. Landes Company, Austin, pp 101–146

  67. Hong YK, Hong WH (2005) Removal of acetic acid from aqueous solutions containing succinic acid and acetic acid by tri-n-octylamine. Sep Purif Technol 42:151–157

    Article  CAS  Google Scholar 

  68. Hong YK, Hong WH, Han DH (2001) Application of reactive extraction to recovery of carboxylic acids. Biotechnol Bioprocess Eng 6:386–394

    Article  CAS  Google Scholar 

  69. Horvath IS, Sjoede A, Alriksson B, Joensson LJ, Nilvebrant N-O (2005) Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce. Appl Biochem Biotechnol 121–124:1031–1044. doi:10.1385/ABAB:124:1-3:1031

    Article  PubMed  Google Scholar 

  70. Huang C, Wu H, Liu Z-J, Cai J, Lou W-Y, Zong M-H (2012) Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnol Biofuels 5:4. doi:10.1186/1754-6834-5-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Huang C, Zong M-h WuH, Q-p Liu (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100:4535–4538. doi:10.1016/j.biortech.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  72. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev (Washington, DC, USA) 106:4044–4098. doi:10.1021/cr068360d

  73. Huh YS, Hong YK, Hong WH, Chang HN (2004) Selective extraction of acetic acid from the fermentation broth produced by Mannheimia succiniciproducens. Biotechnol Lett 26:1581–1584

    Article  CAS  PubMed  Google Scholar 

  74. International Energy Agency (2011) Technology roadmap: biofuels for transport. OECD/IEA, Paris

  75. Ioannidou O, Zabaniotou A, Antonakou EV, Papazisi KM, Lappas AA, Athanassiou C (2009) Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew Sustain Energy Rev 13:750–762. doi:10.1016/j.rser.2008.01.004

    Article  CAS  Google Scholar 

  76. Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis—a technological review. Energies (Basel, Switzerland) 5:4952–5001. doi:10.3390/en5124952

  77. Jarboe LR, Wen Z, Choi DW, Brown RC (2011) Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl Microbiol Biotechnol 91:1519–1523. doi:10.1007/s00253-011-3495-9

    Article  CAS  PubMed  Google Scholar 

  78. Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousa LdC, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33:43–54. doi:10.1016/j.tibtech.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  79. Kacprzak A, Kobylecki R, Wlodarczyk R, Bis Z (2014) The effect of fuel type on the performance of a direct carbon fuel cell with molten alkaline electrolyte. J Power Sources 255:179–186. doi:10.1016/j.jpowsour.2014.01.012

    Article  CAS  Google Scholar 

  80. Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145. doi:10.1007/s00253-003-1537-7

    Article  CAS  PubMed  Google Scholar 

  81. Kertes A, King CJ (1986) Extraction chemistry of fermentation product carboxylic acids. Biotechnol Bioeng 28:269–282

    Article  CAS  PubMed  Google Scholar 

  82. Kitamura Y, Abe Y, Yasui T (1991) Metabolism of levoglucosan (1,6-anhydro-β-d-glucopyranose) in microorganisms. Agric Biol Chem 55:515–521. doi:10.1271/bbb1961.55.515

    Article  CAS  Google Scholar 

  83. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2

    Article  CAS  PubMed  Google Scholar 

  84. Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36:364–373. doi:10.1016/j.pecs.2009.11.004

    Article  CAS  Google Scholar 

  85. Kojima I, Yoshida M, Tanaka M (1970) Distribution of carboxylic acids between organic solvents and aqueous perchloric acid solution. J Inorg Nucl Chem 32:987–995

    Article  CAS  Google Scholar 

  86. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61

    Article  CAS  PubMed  Google Scholar 

  87. Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354. doi:10.1016/j.biortech.2010.06.043

    Article  CAS  PubMed  Google Scholar 

  88. Kuzhiyil N, Dalluge D, Bai X, Kim KH, Brown RC (2012) Pyrolytic sugars from cellulosic biomass. ChemSusChem 5:2228–2236. doi:10.1002/cssc.201200341

    Article  CAS  PubMed  Google Scholar 

  89. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562. doi:10.1002/bbb.169

    Article  CAS  Google Scholar 

  90. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159. doi:10.1016/S0141-0229(98)00101-X

    Article  CAS  Google Scholar 

  91. Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant N-O, Johnsson LJ (2000) Influence of lignocellulose-derived aromatic compounds on oxygen limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 84–86:617–632. doi:10.1385/ABAB:84-86:1-9:617

    Article  PubMed  Google Scholar 

  92. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102:8318–8322. doi:10.1016/j.biortech.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  93. Lede J (2012) Cellulose pyrolysis kinetics: an historical review on the existence and role of intermediate active cellulose. J Anal Appl Pyrolysis 94:17–32. doi:10.1016/j.jaap.2011.12.019

    Article  CAS  Google Scholar 

  94. Lee SM, Park KS, Choi YC, Park YS, Bok JM, Bae DJ, Nahm KS, Choi YG, Yu SC, Ng Kim, Frauenheim T, Lee YH (2000) Hydrogen adsorption and storage in carbon nanotubes. Synth Met 113:209–216. doi:10.1016/S0379-6779(99)00275-1

    Article  CAS  Google Scholar 

  95. Leemhuis H, Kelly RM, Dijkhuizen L (2009) Directed evolution of enzymes: library screening strategies. IUBMB Life 61:222–228. doi:10.1002/iub.165

    Article  CAS  PubMed  Google Scholar 

  96. Li L, Zhang H (2004) Preparing levoglucosan derived from waste material by pyrolysis. Energy Sources 26:1053–1059. doi:10.1080/00908310490494559

    Article  CAS  Google Scholar 

  97. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756. doi:10.1007/s00253-008-1625-9

    Article  CAS  PubMed  Google Scholar 

  98. Li Q, Steele PH, Yu F, Mitchell B, Hassan E-BM (2013) Pyrolytic spray increases levoglucosan production during fast pyrolysis. J Anal Appl Pyrolysis 100:33–40. doi:10.1016/j.jaap.2012.11.013

    Article  CAS  Google Scholar 

  99. Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li C-Z, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101:9688–9699. doi:10.1016/j.biortech.2010.07.071

    Article  CAS  PubMed  Google Scholar 

  100. Lian J, Garcia-Perez M, Coates R, Wu H, Chen S (2012) Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour Technol 118:177–186. doi:10.1016/j.biortech.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  101. Liang Y, Zhao X, Chi Z, Rover M, Johnston P, Brown R, Jarboe L, Wen Z (2013) Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance. Bioresour Technol 133:500–506. doi:10.1016/j.biortech.2013.01.134

    Article  CAS  PubMed  Google Scholar 

  102. Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.1099/ijs.0.63482-0

    Article  CAS  PubMed  Google Scholar 

  103. Liu M-C, Kong L-B, Zhang P, Luo Y-C, Kang L (2012) Porous wood carbon monolith for high-performance supercapacitors. Electrochim Acta 60:443–448. doi:10.1016/j.electacta.2011.11.100

    Article  CAS  Google Scholar 

  104. Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753. doi:10.1007/s00253-008-1702-0

    Article  CAS  PubMed  Google Scholar 

  105. Lora ES, Andrade RV (2009) Biomass as energy source in Brazil. Renew Sustain Energy Rev 13:777–788. doi:10.1016/j.rser.2007.12.004

    Article  CAS  Google Scholar 

  106. Luque L, Westerhof R, Van Rossum G, Oudenhoven S, Kersten S, Berruti F, Rehmann L (2014) Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresour Technol 161:20–28. doi:10.1016/j.biortech.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  107. Ma LW, Fu F, Li Z, Liu P (2012) Oil development in China: current status and future trends. Energy Policy 45:43–53

    Article  Google Scholar 

  108. Mahfud F, Van Geel F, Venderbosch R, Heeres H (2008) Acetic acid recovery from fast pyrolysis oil. An exploratory study on liquid-liquid reactive extraction using aliphatic tertiary amines. Sep Sci Technol 43:3056–3074

    Article  CAS  Google Scholar 

  109. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536. doi:10.1002/1097-0290(20000905)69:5<526:AID-BIT7>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  110. McBryde C, Gardner JM, de Barros Lopes M, Jiranek V (2006) Generation of novel wine yeast strains by adaptive evolution. Am J Enol Vitic 57:423–430

    CAS  Google Scholar 

  111. Meier D, van de Beld B, Bridgwater AV, Elliott DC, Oasmaa A, Preto F (2013) State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renew Sustain Energy Rev 20:619–641. doi:10.1016/j.rser.2012.11.061

    Article  Google Scholar 

  112. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550. doi:10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  113. Milne T, Agblevor F, Davis M, Deutch S, Johnson D (1997) A review of the chemical composition of fast-pyrolysis oils from biomass. In: Blackie, pp 409–424. doi:10.1007/978-94-009-1559-6_32

  114. Milosavljevic I, Suuberg EM (1995) Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res 34:1081–1091. doi:10.1021/ie00043a009

    Article  CAS  Google Scholar 

  115. Mohamad MH, Awang R, Yunus WMZW (2011) A review of acetol: application and production. Am J Appl Sci 8:1135–1139. doi:10.3844/ajassp.2011.1135.1139

    Article  CAS  Google Scholar 

  116. Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. doi:10.1021/ef0502397

    Article  CAS  Google Scholar 

  117. Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article  PubMed Central  PubMed  Google Scholar 

  118. Molton PM, Demmitt T (1977) Reaction mechanisms in cellulose pyrolysis: a literature review. Battelle Pacific Northwest Labs, Richland

    Book  Google Scholar 

  119. Mullaney H, Farag IH, LaClaire CL, Barrett CJ (2002) Technical, environmental and economic feasibility of bio-oil in New Hampshire’s north country—final report

  120. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022. doi:10.1016/j.biortech.2009.12.098

    Article  CAS  PubMed  Google Scholar 

  121. Mussatto SI (2002) Influence of treatment of straw hemicellulosic hydrolyzate in rice production of xylitol by Candida guilliermondii. Faculty of chemical engineering, Lorena

    Google Scholar 

  122. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10. doi:10.1016/j.biortech.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  123. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. doi:10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  124. Nakagawa M, Sakai Y, Yasui T (1984) Itaconic acid fermentation of levoglucosan. J Ferment Technol 62:201–203

    CAS  Google Scholar 

  125. Nakahara K, Kitamura Y, Yamagishi Y, Shoun H, Yasui T (1994) Levoglucosan dehydrogenase involved in the assimilation of levoglucosan in Arthrobacter sp. I-552. Biosci Biotechnol Biochem 58:2193–2196. doi:10.1271/bbb.58.2193

    Article  CAS  PubMed  Google Scholar 

  126. Ning J, Yu Z, Xie H, Zhang H, Zhuang G, Bai Z, Yang S, Jiang Y (2008) Purification and characterization of levoglucosan kinase from Lipomyces starkeyi YZ-215. World J Microbiol Biotechnol 24:15–22. doi:10.1007/s11274-007-9432-5

    Article  CAS  Google Scholar 

  127. O’Keefe B (2013) Recent trends in air quality standards in Europe and Asia: what’s next? In: Paper presented at the HEI annual conference

  128. Oasmaa A, Leppamaki E, Koponen P, Levander J, Tapola E (1997) Physical characterization of biomass-based pyrolysis liquids. Application of standard fuel oil analyses. In: CPL Press, pp 450–459

  129. Oasmaa A, Peacocke CA (2001) Guide to physical property characterisation of biomass-derived fast pyrolysis liquids. VTT Publication 450. VTT, Espoo

  130. Oasmaa A, Solantausta Y, Arpiainen V, Kuoppala E, Sipila K (2010) Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 24:1380–1388. doi:10.1021/ef901107f

    Article  CAS  Google Scholar 

  131. Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106:128–133. doi:10.1263/jbb.106.128

    Article  CAS  PubMed  Google Scholar 

  132. Olson ES, Freel B (2007) Process for converting anhydrosugars to glucose and other fermentable sugars. US20070125369A1

  133. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331. doi:10.1016/0141-0229(95)00157-3

    Article  CAS  Google Scholar 

  134. Burden of disease from the joint effects of household and ambient air Pollution for 2012 (2012). http://www.who.int/phe/health_topics/outdoorair/databases/AP_jointeffect_BoD_results_March2014.pdf. Accessed 19 Sept 2015

  135. WHO methods and data sources for global causes of death 2000–2012 (2014). http://www.who.int/entity/healthinfo/global_burden_disease/GlobalCOD_method_2000_2012.pdf. Accessed 19 Sept 2015

  136. Otten LG, Quax WJ (2005) Directed evolution: selecting today’s biocatalysts. Biomol Eng 22:1–9. doi:10.1016/j.bioeng.2005.02.002

    Article  CAS  PubMed  Google Scholar 

  137. Oudenhoven SRG, Westerhof RJM, Aldenkamp N, Brilman DWF, Kersten SRA (2013) Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production. J Anal Appl Pyrolysis 103:112–118. doi:10.1016/j.jaap.2012.10.002

    Article  CAS  Google Scholar 

  138. Palmqvist E, Almeida JS, Hahn-Hagerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454. doi:10.1002/(SICI)1097-0290(19990220)62:4<447:AID-BIT7>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  139. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. doi:10.1016/S0960-8524(99)00160-1

    Article  CAS  Google Scholar 

  140. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/S0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  141. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  142. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073. doi:10.1002/ejlt.201100015

    Article  CAS  Google Scholar 

  143. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrolysis 86:323–330. doi:10.1016/j.jaap.2009.08.007

    Article  CAS  Google Scholar 

  144. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101:4646–4655. doi:10.1016/j.biortech.2010.01.112

    Article  CAS  PubMed  Google Scholar 

  145. Paustian T (2000) Metabolism-fermentation. http://dwb4.unl.edu/Chem/CHEM869P/CHEM869PLinks/www.bact.wisc.edu/microtextbook/metabolism/Fermentation.html. Accessed 19 Sept 2015

  146. Pictet A, Sarasin J (1918) Sur la ddistillation de la cellulose et de l’amidon sous pression reduite. Helv Chim Acta 87–96

  147. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose (Dordrecht, The Netherlands) 16:743–762. doi:10.1007/s10570-009-9309-x

  148. Piskorz J, Majerski P, Radlein D, Scott DS, Landriault YP, Notarfonzo RP, Vijh DK (1997) Economics of the production of fermentable sugars from biomass by fast pyrolysis. In: Paper presented at the third biomass conference of the Americas, Montreal

  149. Piskorz J, Radlein DSAG, Scott DS, Czernik S (1989) Pretreatment of wood and cellulose for production of sugars by fast pyrolysis. J Anal Appl Pyrolysis 16:127–142. doi:10.1016/0165-2370(89)85012-0

    Article  CAS  Google Scholar 

  150. Pollard AS, Rover MR, Brown RC (2012) Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. J Anal Appl Pyrolysis 93:129–138. doi:10.1016/j.jaap.2011.10.007

    Article  CAS  Google Scholar 

  151. Prosen EM, Radlein D, Piskorz J, Scott DS, Legge RL (1993) Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng 42:538–541. doi:10.1002/bit.260420419

    Article  CAS  PubMed  Google Scholar 

  152. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sustain Energy Rev 42:1055–1064. doi:10.1016/j.rser.2014.10.074

    Article  CAS  Google Scholar 

  153. Radlein D (1999) The production of chemicals from fast pyrolysis bio-oils. In: Fast pyrolysis of biomass: a handbook. CPL Press, Newbury

  154. Rasrendra CB, Girisuta B, van de Bovenkamp HH, Winkelman JGM, Leijenhorst EJ, Venderbosch RH, Windt M, Meier D, Heeres HJ (2011) Recovery of acetic acid from an aqueous pyrolysis oil phase by reactive extraction using tri-n-octylamine. Chem Eng J (Amsterdam, The Netherlands) 176–177:244–252. doi:10.1016/j.cej.2011.08.082

  155. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51 (51 plate)

  156. Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2:891–903. doi:10.1038/nprot.2007.72

    Article  CAS  PubMed  Google Scholar 

  157. Ricker NL, Pittman EF, King CJ (1980) Solvent extraction with amines for recovery of acetic acid from dilute aqueous industrial streams. J Sep Process Technol 1:23–30

    CAS  Google Scholar 

  158. Rinaldi R, Schueth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107. doi:10.1002/cssc.200900188

    Article  CAS  PubMed  Google Scholar 

  159. Rohde RA, Muller RA (2015) Air pollution in China: mapping of concentrations and sources. PLoS One 10:e0135749

    Article  PubMed Central  PubMed  Google Scholar 

  160. Rosillo-Calle F (2012) Food versus fuel: toward a new paradigm—the need for a holistic approach. ISRN Renewe Energy 954115–954180. doi:10.5402/2012/954180

  161. Rover MR, Johnston PA, Lamsal BP, Brown RC (2013) Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay. J Anal Appl Pyrolysis 104:194–201. doi:10.1016/j.jaap.2013.08.004

    Article  CAS  Google Scholar 

  162. Sandvig E, DE Walling Daugaard, Pletka PJ, Johnson W, Radlein D, Brown RC (2004) The prospects for integrating fast pyrolysis into biomass power systems. Int J Power Energy Syst 24:228–238

    Google Scholar 

  163. Santhanaraj D, Rover MR, Resasco DE, Brown RC, Crossley S (2014) Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass. ChemSusChem 7:3132–3137. doi:10.1002/cssc.201402431

    Article  CAS  PubMed  Google Scholar 

  164. Saxena RC, Adhikari DK, Goyal HB (2008) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:156–167. doi:10.1016/j.rser.2007.07.011

    Google Scholar 

  165. Schohn AJ (1999) A new look at brewing. http://rpi.edu/dept/chem-eng/Biotech-Environ/beer/biochem/biochem.htm. Accessed 19 Sept 2015

  166. Scott DS, Piskorz J (1989) Process for the production of fermentable sugars from biomass. US Patent

  167. Shafizadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y (1979) Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polym Sci 23:3525–3539. doi:10.1002/app.1979.070231209

    Article  CAS  Google Scholar 

  168. Shafizadeh F, Stevenson TT (1982) Saccharification of Douglas-fir wood by a combination of prehydrolysis and pyrolysis. J Appl Polym Sci 27:4577–4585. doi:10.1002/app.1982.070271205

    Article  CAS  Google Scholar 

  169. Sharak Genthner BR, Bryant MP (1987) Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Environ Microbiol 53:471–476

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Shin C-H, Kim J-Y, Kim J-Y, Kim H-S, Lee H-S, Mohapatra D, Ahn J-W, Ahn J-G, Bae W (2009) A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process. J Hazard Mater 162:1278–1284

    Article  CAS  PubMed  Google Scholar 

  171. Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40:1234–1243. doi:10.1016/j.enzmictec.2006.09.017

    Article  CAS  Google Scholar 

  172. Sipilä K, Kuoppala E, Fagernäs L, Oasmaa A (1998) Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 14:103–113

    Article  Google Scholar 

  173. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37:1271–1287. doi:10.1007/s10295-010-0884-5

    Article  CAS  PubMed  Google Scholar 

  174. Sukhbaatar B, Li Q, Wan C, Yu F, Hassan E-B, Steele P (2014) Inhibitors removal from bio-oil aqueous fraction for increased ethanol production. Bioresour Technol 161:379–384. doi:10.1016/j.biortech.2014.03.051

    Article  CAS  PubMed  Google Scholar 

  175. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  176. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236. doi:10.1099/00207713-43-2-232

    Article  CAS  PubMed  Google Scholar 

  177. Teixeira AR, Mooney KG, Kruger JS, Williams CL, Suszynski WJ, Schmidt LD, Schmidt DP, Dauenhauer PJ (2011) Aerosol generation by reactive boiling ejection of molten cellulose. Energy Environ Sci 4:4306–4321. doi:10.1039/c1ee01876k

    Article  CAS  Google Scholar 

  178. Thompson P (2012) The agricultural ethics of biofuels: the food vs. fuel debate. Agriculture 2:339–358

    Article  Google Scholar 

  179. Thornley P, Wright E (2001) Evaluation of bio-energy projects. In: PyNe final report to the EC

  180. Tong X, Zhao L, Wang R (2008) Several thoughts on overseas oil dependence ratio in China. Res Econ Manag 1:60–65

    Google Scholar 

  181. Venderbosch R, Prins W (2010) Fast pyrolysis technology development. Biofuels Bioprod Biorefin 4:178–208. doi:10.1002/bbb.205

    Article  CAS  Google Scholar 

  182. Vitasari C, Meindersma W, de Haan A (2010) Production of discrete from pyrolysis oil. NPT Procestechnol 17:26–27

    CAS  Google Scholar 

  183. Vitasari CR, Meindersma GW, de Haan AB (2011) Water extraction of pyrolysis oil: the first step for the recovery of renewable chemicals. Bioresour Technol 102:7204–7210. doi:10.1016/j.biortech.2011.04.079

    Article  CAS  PubMed  Google Scholar 

  184. Vitasari CR, Meindersma GW, de Haan AB (2012) Laboratory scale conceptual process development for the isolation of renewable glycolaldehyde from pyrolysis oil to produce fermentation feedstock. Green Chem 14:321–325. doi:10.1039/C1GC16200D

    Article  CAS  Google Scholar 

  185. Vitasari CR, Meindersma GW, de Haan AB (2012) Renewable glycolaldehyde isolation from pyrolysis oil-derived aqueous solution by reactive extraction with primary amines. Sep Purif Technol 95:103–108. doi:10.1016/j.seppur.2012.04.027

    Article  CAS  Google Scholar 

  186. Vitasari CR, Meindersma GW, de Haan AB (2015) Conceptual process design of an integrated bio-based acetic acid, glycolaldehyde, and acetol production in a pyrolysis oil-based biorefinery. Chem Eng Res Des 95:133–143. doi:10.1016/j.cherd.2015.01.010

    Article  CAS  Google Scholar 

  187. Wang H, Livingston D, Srinivasan R, Li Q, Steele P, Yu F (2012) Detoxification and fermentation of pyrolytic sugar for ethanol production. Appl Biochem Biotechnol 168:1568–1583. doi:10.1007/s12010-012-9879-1

    Article  CAS  PubMed  Google Scholar 

  188. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315. doi:10.1007/s00253-010-2707-z

    Article  CAS  PubMed  Google Scholar 

  189. Weete JD (2012) Lipid biochemistry of fungi and other organisms. Springer, New York

  190. Westcott P (2007) Ethanol expansion in the United States: how will the agricultural sector adjust? A report from economic research service. http://www.ers.usda.gov/publications/fds/2007/05may/fds07d01/fds07d01.pdf. Accessed 19 Sept 2015

  191. Wierckx N, Koopman F, Bandounas L, de Winde JH, Ruijssenaars HJ (2010) Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate. Microb Biotechnol 3:336–343. doi:10.1111/j.1751-7915.2009.00158.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Witczak ZJ (1994) Levoglucosenone and Levoglucosans chemistry and applications: proceedings of the symposium on Levoglucosenone and Levoglucosans, sponsored by the division of carbohydrate chemistry at the 204th National Meeting of the American Chemical Society, vol 1. Atl Pr Scientific Pub, Washington, DC, 26 August 1992

  193. Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Vos T, Wang H, Lopez AD, Murray CJL (2013) Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 381:1987–2015

    Article  PubMed  Google Scholar 

  194. Yu S, Tao J (2009) Simulation-based life cycle assessment of energy efficiency of biomass-based ethanol fuel from different feedstocks in China. Energy (Oxford, UK) 34:476–484. doi:10.1016/j.energy.2008.12.015

  195. Yu Z, Zhang H (2003) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 90:95–100. doi:10.1016/S0960-8524(03)00093-2

    Article  CAS  PubMed  Google Scholar 

  196. Yu Z, Zhang H (2003) Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass Bioenergy 24:257–262. doi:10.1016/S0961-9534(02)00147-2

    Article  CAS  Google Scholar 

  197. Yu Z, Zhang H (2004) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 93:199–204. doi:10.1016/j.biortech.2003.09.016

    Article  CAS  PubMed  Google Scholar 

  198. Zeng F, Liu W, Jiang H, Yu H-Q, Zeng RJ, Guo Q (2011) Separation of phthalate esters from bio-oil derived from rice husk by a basification-acidification process and column chromatography. Bioresour Technol 102:1982–1987. doi:10.1016/j.biortech.2010.09.024

    Article  CAS  PubMed  Google Scholar 

  199. Zhang Y, Brown TR, Hu G, Brown RC (2013) Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose. Bioresour Technol 127:358–365. doi:10.1016/j.biortech.2012.09.070

    Article  CAS  PubMed  Google Scholar 

  200. Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004. doi:10.1007/s00449-012-0684-6

    Article  CAS  PubMed  Google Scholar 

  201. Zhou S, Wang Z, Liaw S-S, Li C-Z, Garcia-Perez M (2013) Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies. J Anal Appl Pyrolysis 104:117–130. doi:10.1016/j.jaap.2013.08.013

    Article  CAS  Google Scholar 

  202. Zhuang X, Zhang H (2002) Identification, characterization of levoglucosan kinase, and cloning and expression of levoglucosan kinase cDNA from Aspergillus niger CBX-209 in Escherichia coli. Protein Expr Purif 26:71–81. doi:10.1016/S1046-5928(02)00501-6

    Article  CAS  PubMed  Google Scholar 

  203. Zilberman D, Hochman G, Rajagopal D, Sexton S, Timilsina G (2012) The impact of biofuels on commodity food prices: assessment of findings. Am J Agric Econ 95:275–281

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Natural Science Foundation of China (Grant No. 21177153) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB15010200). I would like to express my deepest thanks to Dr. Robert C. Brown from Iowa State University for providing some relevant materials. I am also thankful to Mrs. Lita Istiyanti for her help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhisheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, Z.U., Zhisheng, Y., Hassan, E.B. et al. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels. J Ind Microbiol Biotechnol 42, 1557–1579 (2015). https://doi.org/10.1007/s10295-015-1687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1687-5

Keywords

Navigation