Skip to main content
Log in

Fed-batch operation in special microtiter plates: a new method for screening under production conditions

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Batch and fed-batch operation result in completely different physiological conditions for cultivated microorganisms or cells. To close the gap between screening, which is hitherto exclusively performed in batch mode, and fed-batch production processes, a special microtiter plate was developed that allows screening in fed-batch mode. The fed-batch microtiter plate (FB-MTP) enables 44 parallel fed-batch experiments at small scale. A small channel filled with a hydrogel connects a reservoir well with a culture well. The nutrient compound diffuses from the reservoir well through the hydrogel into the culture well. Hence, the feed rate can easily be adjusted to the needs of the cultured microorganisms by changing the geometry of the hydrogel channel and the driving concentration gradient. Any desired compound including liquid nutrients like glycerol can be fed to the culture. In combination with an optical measuring device (BioLector), online monitoring of these 44 fed-batch cultures is possible. Two Escherichia coli strains and a Hansenula polymorpha strain were successfully cultivated in the new FB-MTP. As a positive impact of the fed-batch mode on the used strains, a fourfold increase in product formation was observed for E. coli. For H. polymorpha, the use of fed-batch mode resulted in a strong increase in product formation, whereas no measurable product formation was observed in batch mode. In conclusion, the newly developed fed-batch microtiter plate is a versatile, easy-to-use, disposable system to perform fed-batch cultivations at small scale. Screening cultures in high-throughput under online monitoring are possible similar to cultivations under production conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amuel C, Gellissen G, Hollenberg CP, Suckow M (2000) Analysis of heat shock promoters in Hansenula polymorpha: the TPS1 promoter, a novel element for heterologous gene expression. Biotechnol Bioprocess Eng 5(4):247–252

    Article  CAS  Google Scholar 

  2. Bähr C, Leuchtle B, Lehmann C, Becker J, Jeude M, Peinemann F, Arbter R, Büchs J (2012) Dialysis shake flask for effective screening in fed-batch mode. Biochem Eng J 69:182–195

    Article  Google Scholar 

  3. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Bertani G (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186(3):595–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Broughall JM, Anslow PA, Kilsby DC (1983) Hazard analysis applied to microbial-growth in food: development of mathematical-models describing the effect of water activity. J Appl Bacteriol 55(1):101–110

    Article  CAS  PubMed  Google Scholar 

  6. Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7(2):91–98

    Article  PubMed  Google Scholar 

  7. De Deken RH (1966) Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44(2):149–156

    Article  PubMed  Google Scholar 

  8. Drepper T, Eggert T, Circolone F, Heck A, Krauß U, Guterl J-K, Wendorff M, Losi A, Gärtner W, Jaeger K-E (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25(4):443–445

    Article  CAS  PubMed  Google Scholar 

  9. Drepper T, Huber R, Heck A, Circolone F, Hillmer A-K, Büchs J, Jaeger K-E (2010) Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters. Appl Environ Microbiol 76(17):5990–5994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fick A (1855) Ueber diffusion. Ann Phys 170(1):59–86

    Article  Google Scholar 

  11. Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Mueller C, Kensy F, Büchs J (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9:86

    Article  PubMed Central  PubMed  Google Scholar 

  12. Funke M, Buchenauer A, Schnakenberg U, Mokwa W, Diederichs S, Mertens A, Müller C, Kensy F, Büchs J (2010) Microfluidic BioLector––microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107(3):497–505

    Article  CAS  PubMed  Google Scholar 

  13. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54(6):741–750

    Article  CAS  PubMed  Google Scholar 

  14. Gellissen G (2004) Production of recombinant proteins: novel microbial and eukaryotic expression system. Wiley-VCH, Weinheim

    Book  Google Scholar 

  15. Hermann R, Lehmann M, Büchs J (2003) Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 81(2):178–186

    Article  CAS  PubMed  Google Scholar 

  16. Huber R, Ritter D, Hering T, Hillmer A-K, Kensy F, Müller C, Wang L, Büchs J (2009) Robo-Lector: a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jacob F, Monod J (1961) Genetic regulatory mechanisms in synthesis of proteins. J Mol Biol 3(3):318–356

    Article  CAS  PubMed  Google Scholar 

  18. Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J (2006) Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng 95(3):433–445

    Article  CAS  PubMed  Google Scholar 

  19. Katzke N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V, Jaeger K-E, Heck A, Drepper T (2010) A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Prot Expr Purif 69(2):137–146

    Article  CAS  Google Scholar 

  20. Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27(2):229–246

    Article  CAS  PubMed  Google Scholar 

  21. Kedem O, Katchalsky A (1963) Permeablility of composite membranes. 1. Electric current, volume flow of solute through membranes. Trans Faraday Soc 59(488):1918–1930

    Article  Google Scholar 

  22. Kensy F, Zang E, Faulhammer C, Tan R-K, Büchs J (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kensy F, Zimmermann HF, Knabben I, Anderlei T, Trauthwein H, Dingerdissen U, Büchs J (2005) Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Biotechnol Bioeng 89(6):698–708

    Article  CAS  PubMed  Google Scholar 

  24. Kim BS, Lee SC, Lee SY, Chang YK, Chang HN (2004) High cell density fed-batch cultivation of E. coli using exponential feeding combined with pH-stat. Bioproc Biosyst Eng 26(3):147–150

    Article  CAS  Google Scholar 

  25. Kottmeier K, Weber J, Mueller C, Bley T, Büchs J (2009) Asymmetric division of H. polymorpha reflected by a drop of light scatter intensity measured in batch microtiter plate cultivations at phosphate limitation. Biotechnol Bioeng 104(3):554–561

    Article  CAS  PubMed  Google Scholar 

  26. Krause M, Ukkonen K, Haataja T, Ruottinen M, Glumoff T, Neubauer A, Neubauer P, Vasala A (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microb Cell Fact 9:11

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kumar S, Wittmann C, Heinzle E (2004) Mini-bioreactors. Biotechnol Lett 26(1):1–10

    Article  CAS  PubMed  Google Scholar 

  28. Larsson G, Jørgensen SB, Pons MN, Sonnleitner B, Tijsterman A, Titchener-Hooker N (1997) Biochemical engineering science. J Biotechnol 59(1–2):3–9

    Article  CAS  PubMed  Google Scholar 

  29. McGown EL, Hafeman DG (1998) Multichannel pipettor performance verified by measuring pathlength of reagent dispensed into a microplate. Anal Biochem 258(1):155–157

    Article  CAS  PubMed  Google Scholar 

  30. Meyer H-P, Turner NJ (2009) Biotechnological manufacturing options for organic chemistry. Mini Rev Org Chem 6(4):300–306

    Article  CAS  Google Scholar 

  31. Muhr AH, Blanshard JMV (1982) Diffusion in gels. Polym 23(7):1012–1026

    Article  CAS  Google Scholar 

  32. Murray I, Williams PC (2001) Near-infrared technology in the agricultural and food industries. Chemical principles of near-IR technologies, 2nd edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  33. Panula-Perälä J, Šiurkus J, Vasala A, Wilmanowski R, Casteleijn MG, Neubauer P (2008) Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks. Microb Cell Fact 7:31

    Article  PubMed Central  PubMed  Google Scholar 

  34. Riesenberg D (1991) High-cell-density cultivation of E. coli. Curr Opin Biotechnol 2(3):380–384

    Article  CAS  PubMed  Google Scholar 

  35. Samorski M, Müller-Newen G, Büchs J (2005) Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates. Biotechnol Bioeng 92(1):61–68

    Article  CAS  PubMed  Google Scholar 

  36. Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D, Büchs J (2011) Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 11:25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Scheidle M, Jeude M, Dittrich B, Denter S, Kensy F, Suckow M, Klee D, Büchs J (2010) High-throughput screening of H. polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 10(1):83–92

    Article  CAS  PubMed  Google Scholar 

  38. Scheidle M, Klinger J, Büchs J (2007) Combination of on-line pH and oxygen transfer rate measurement in shake flasks by fiber optical technique and respiration activity monitoring system (RAMOS). Sensors 7(12):3472–3480

    Article  CAS  Google Scholar 

  39. Stöckmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Büchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant H. polymorpha production strains in test tube cultures. FEMS Yeast Res 4(2):195–205

    Article  PubMed  Google Scholar 

  40. Stöckmann C, Maier U, Anderlei T, Knocke C, Gellissen G, Büchs J (2003) The oxygen transfer rate as key parameter for the characterization of H. polymorpha screening cultures. J Ind Microbiol Biotechnol 30(10):613–622

    Article  PubMed  Google Scholar 

  41. Stöckmann C, Scheidle M, Dittrich B, Merckelbach A, Hehmann G, Melmer G, Klee D, Büchs J, Kang HA, Gellissen G (2009) Process development in H. polymorpha and Arxula adeninivorans, a re-assessment. Microb Cell Fact 8:22

    Article  PubMed Central  PubMed  Google Scholar 

  42. Valgepea K, Adamberg K, Nahku R, Lahtvee P-J, Arike L, Vilu R (2010) Systems biology approach reveals that overflow metabolism of acetate in E. coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 4:166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Van Wijk R (1968) Alpha-glucosidase synthesis respiratory enzymes and catabolite repression in yeast 1. Effects of glucose and maltose on inducible alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis. Proc K Ned Akad Wet C 71(1):60–71

    PubMed  Google Scholar 

  44. Weuster-Botz D (2005) Parallel reactor systems for bioprocess development. In: Technology Transfer in Biotechnology: From Lab to Industry to Production, vol 92. Advances in biochemical engineering-biotechnology. Springer, Berlin Heidelberg New York, pp 125–143

  45. Weuster-Botz D, Altenbach-Rehm J, Arnold M (2001) Parallel substrate feeding and pH-control in shaking flasks. Biochem Eng J 7(2):163–170

    Article  CAS  PubMed  Google Scholar 

  46. Xu B, Jahic M, Blomsten G, Enfors SO (1999) Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with E. coli. Appl Microbiol Biotechnol 51(5):564–571

    Article  PubMed  Google Scholar 

  47. Yankov D (2004) Diffusion of glucose and maltose in polyacrylamide gel. Enzyme Microb Technol 34(6):603–610

    Article  CAS  Google Scholar 

  48. Zhang YK, Taiming L, Liu JJ (2003) Low temperature and glucose enhanced T7 RNA polymerase-based plasmid stability for increasing expression of glucagon-like peptide-2 in E. coli. Prot Expr Purif 29(1):132–139

    Article  CAS  Google Scholar 

  49. Zhang Z, Perozziello G, Boccazzi P, Sinskey AJ, Geschke O, Jensen KF (2007) Micro-bioreactors for bioprocess development. JALA 12(3):143–151

    Google Scholar 

Download references

Acknowledgments

The E. coli BL21 (DE3) pRhotHi-2––Ec FbFP was kindly provided by T. Drepper, Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf/Germany. The H. polymorpha RB 11 pC10-FMD (pFMD-GFP) was kindly supplied by the company RheinBiotech. The authors thank the company Lohmann for the supply of adhesive foils and Mr. Gerhard Otto from the Fraunhofer ILT, RWTH Aachen University (Germany) for the modification of the adhesive foils. The authors also thank Mr. Alfons Will for preparing the technical drawings.

Conflict of interest

All authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Büchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilming, A., Bähr, C., Kamerke, C. et al. Fed-batch operation in special microtiter plates: a new method for screening under production conditions. J Ind Microbiol Biotechnol 41, 513–525 (2014). https://doi.org/10.1007/s10295-013-1396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1396-x

Keywords

Navigation