Skip to main content
Log in

The oxygen transfer rate as key parameter for the characterization of Hansenula polymorpha screening cultures

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)−1 and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l−1 (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l−1 (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245±0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h−1 in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h−1 when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a, b

Similar content being viewed by others

References

  1. Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Bio/Technology 9:1067–1072

    Google Scholar 

  2. Hansen HG, Hollenberg CP (1996) Hansenula polymorpha. In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer, Berlin-Heidelberg New York, pp 293–311

  3. Hollenberg CP, Gellissen G (1997) Production of recombinant proteins by methylotrophic yeasts. Curr Opin Biotech 8:554–560

    CAS  PubMed  Google Scholar 

  4. Cereghino J L, Cregg J M (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

  5. Gellissen G (2002) Hansenula polymorpha biology and applications. Wiley-VCH, Weinheim, Germany

  6. Parekh S, Vinci VI, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301

    Article  CAS  PubMed  Google Scholar 

  7. Hilton MD (1999) Small-scale liquid fermentations. In: Demain AL (ed) Manual of industrial microbiology and biotechnology. American Society of Microbiology, Washington DC, pp 49–60

  8. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68:594–601

    Article  PubMed  Google Scholar 

  9. Payne GF, Davison SW, Tate JL (1990) Experimental constraints to studying the effects of dissolved oxygen and dissolved carbon dioxide on plant cell growth. Dev Ind Microbiol 31:293–301

    Google Scholar 

  10. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7:157–162

    Article  CAS  PubMed  Google Scholar 

  11. Schaefer S, Piontek M, Ahn S-J, Papendieck A, Janowicz ZA, Gellissen G (2001) Recombinant hepatitis B vaccines—characterisation of the viral disease and vaccine production in the methylotrophic yeast, Hansenula polymorpha. In: Dembowsky K, Stadler P (eds) Novel therapeutic proteins—selected case studies. Wiley-VCH, Weinheim, Germany, pp 245–274

  12. Weydemann U, Keup P, Gellissen G, Janowicz ZA (1995) Ein industrielles Herstellungsverfahren von rekombinantem Hirudin in der methylotrophen Hefe Hansenula polymorpha. Bioscope 1/95:7–13

    Google Scholar 

  13. Zurek C, Kubis E, Keup P, Hörlein D, Beunink J, Thömmes J, Kula M-R, Hollenberg CP, Gellissen G (1996) Production of two aprotinin variants in Hansenula polymorpha. Process Biochem 31:679–689

    Article  CAS  Google Scholar 

  14. Gellissen G, Melber K (1996) Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Drug Res 46:943–948

    CAS  Google Scholar 

  15. Gellissen G (2000) Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54:741–750

    Article  CAS  PubMed  Google Scholar 

  16. Gellissen G, Hollenberg CP, Janowicz ZA (1994) Gene expression in methylotrophic yeasts. In: Smith A (ed) Gene expression in recombinant microorganisms. Marcel Dekker, New York, pp 195–239

  17. Maier U, Büchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106

    Article  CAS  PubMed  Google Scholar 

  18. Maier U, Losen M, Büchs J (2003) Advances in understanding and modeling the gas liquid mass transfer in shaking flasks. Biochem Eng J (in press)

  19. Espeso EA, Arst HN (2000) On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 20:3355–3363

    Article  CAS  PubMed  Google Scholar 

  20. Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61–71

    Article  CAS  PubMed  Google Scholar 

  21. Wubben JP, ten Have A, van Kan JAL, Visser J (2000) Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression. Curr Genet 37:152–157

    Google Scholar 

  22. MacCabe AP, Ramon D (2001) Expression of the Aspergillus nidulans xlnC gene encoding the X34 endo-xylanase is subject to catabolite repression and pH control. World J Microb Biot 17:57–60

    Article  CAS  Google Scholar 

  23. Roggenkamp R, Hansen H, Eckart M, Janowicz ZA, Hollenberg CP (1986) Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet 202:302–308

    CAS  Google Scholar 

  24. Pronk JT (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68:2095–2100

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen TL, Holmberg S, Petersen JGL (1990) Regulated overproduction and secretion of yeast carboxypeptidase Y. Appl Microbiol Biotechnol 33:307–312

    CAS  PubMed  Google Scholar 

  26. Lopes TS, Hakkaart GAJ, Koerts BL, Raue HA, Planta RJ (1991) Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae. Gene 105:83–90

    CAS  PubMed  Google Scholar 

  27. Nieto A, Prieto JA, Sanz P (1999) Stable high-copy-number integration of Aspergillus oryzae a-amylase cDNA in an industrial baker’s yeast strain. Biotechnol Prog 15:459–466

    Article  CAS  PubMed  Google Scholar 

  28. Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Macmillan, Surrey, UK

  29. Egli T, Quayle JR (1986) Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J Gen Microbiol 132:1779–1788

    CAS  Google Scholar 

  30. Guthke R, Schmidt-Heck W, Pfaff M (1998) Knowledge acquisition and knowledge based control in bioprocess engineering. J Biotechnol 65:37–46

    Article  CAS  Google Scholar 

  31. Zigova J (2000) Effect of RQ and pre-seed conditions on biomass and galactosyl transferase production during fed-batch culture of S. cerevisiae BT150. J Biotechnol 80:55–62

    Article  CAS  PubMed  Google Scholar 

  32. Neves AA, Vieira LM, Menezes JC (2001) Effects of preculture variability on clavulanic acid fermentation. Biotechnol Bioeng 72:628–633

    Article  CAS  PubMed  Google Scholar 

  33. Cimander C, Bachinger T, Mandenius C-F (2002) Assessment of the performance of a fed-batch cultivation from the precultrue quality using an electronic nose. Biotechnol Prog 18:380–386

    Article  CAS  PubMed  Google Scholar 

  34. Calado CRC, Monteiro SMS, Cabral JMS, Fonseca LP (2002) Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae. J Biosci Bioeng 93:354–359

    Article  CAS  Google Scholar 

  35. Perrin DD (1982) Ionization of inorganic acids and bases in aqueous solution, 2nd edn. Pergamon, Oxford

  36. Snoep JL, Yomano LP, Westerhoff HV, Ingram LO (1995) Protein burden in Zymomonas mobilis: negative flux and growth control due to overproducion of glycolytic enzymes. Microbiology 141:2329–2337

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the scientific personnel of the Rhein Biotech GmbH for providing internal data on the screening system as a vital basis for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Büchs.

Appendix

Appendix

Symbols

c :

Concentration [mol l−1], [g l−1]

H+ (released):

Released protons [mol]

H2PO4 - :

Dihydrogen phosphate [mol]

H 3 PO 4 :

Phosphoric acid [mol]

NH3 (assim):

Assimilated ammonium [mol]

NH4 + :

Ammonium [mol]

OTR:

Oxygen transfer rate [mol (l h)−1]

OTR max :

Maximum oxygen transfer capacity [mol (l h)−1]

\(pK_{{CO_{2} }} \) :

Dissociation constant of the dissociation pair H2CO3/HCO3 [–]

\(pK_{{NH_{4} }} \) :

Dissociation constant of the dissociation pair NH4 +/NH3 [–]

\(pK_{{PO_{4} }} \) :

Dissociation constant of the dissociation pair H3PO4/H2PO4 [–]

\(R_{{Glyc/O_{2} }} \) :

Stoichiometric ratio between glycerol and oxygen [mol mol−1]

\(R_{{NH_{4} /Glyc}} \) :

Stoichiometric ratio between ammonium and glycerol [mol mol−1]

\(R_{{NH_{4} /O_{2} }} \) :

Stoichiometric ratio between ammonium and oxygen [mol mol−1]

R Uracil/Glyc :

Stoichiometric ratio between uracil and glycerol [mol mol−1]

t 0 :

Initial time [h]

t :

Point of time [h]

\(Y_{{X/O_{2} }} \) :

Oxygen-dependent biomass yield [g mol−1]

Y X/Glyc :

Glycerol-dependent biomass yield [g mol−1]

Y Prot/Glyc :

Glycerol-dependent protein yield [g mol−1]

µ max :

Maximum specific growth rate coefficient [h−1]

Indices

Glyc:

Glycerol

H+ (released):

Released protons

H2PO4 :

Dihydrogen phosphate

H3PO4 :

Phosphoric acid

PO4(total):

Total phosphate

NH3 (assim):

Assimilated ammonium

NH4 :

Ammonium

O2 :

Oxygen

X:

Biomass

0:

Initial point of time

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöckmann, C., Maier, U., Anderlei, T. et al. The oxygen transfer rate as key parameter for the characterization of Hansenula polymorpha screening cultures. J IND MICROBIOL BIOTECHNOL 30, 613–622 (2003). https://doi.org/10.1007/s10295-003-0090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-003-0090-9

Keywords

Navigation