Skip to main content
Log in

Identification and functional characterization of two Δ12-fatty acid desaturases associated with essential linoleic acid biosynthesis in Physcomitrella patens

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Two Δ12-desaturases associated with the primary steps of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis were successfully cloned from Physcomitrella patens and their functions identified. The open reading frames (ORFs) of PpFAD2-1 and PpFAD2-2 consisted of 1,128 bp and code for 375 amino acids. Their deduced polypeptides showed 62–64 % identity to microsomal Δ12-desaturases from other higher plants, and each contained the three histidine clusters typical of the catalytic domains of such enzymes. Yeast cells transformed with plasmid constructs containing PpFAD2-1 or PpFAD2-2 produced an appreciable amount of hexadecadienoic (16:2 Δ9,12) and linoleic acids (18:2 Δ9,12), not normally present in wild-type yeast cells, indicating that the genes encoded functional Δ12-desaturase enzymes. In addition, reduction of the growth temperature from 30 to 15 °C resulted in increased accumulation of unsaturated fatty acid products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashton NW, Cove DC (1977) The isolation and preliminary characterization of auxotrophic and analogue resistance mutants in the moss Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  2. Avelange-Macherel MH, Macherel D, Wada H, Murata N (1995) Site-directed mutagenesis of histidine residues in the Δ12 acyl-lipid desaturase of Synechocystis. FEBS Lett 361:111–114

    Article  PubMed  CAS  Google Scholar 

  3. Dyer JM, Mullen RT (2008) Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research. Physiol Plantarum 132:11–32

    CAS  Google Scholar 

  4. Eiamsa-ard P, Kanjana-Opas A, Cahoon EB, Chodok P, Kaewsuwan S (2013) Two novel Physcomitrella patens fatty acid elongases (ELOs): identification and functional characterization. Appl Microbiol Biotechnol 97:3485–3497

    Article  PubMed  CAS  Google Scholar 

  5. Falcone DL, Gibson SG, Lemieux B, Somerville C (1994) Identification of a gene complements an Arabidopsis mutant deficient in chloroplast ω6 desaturase activity. Plant Physiol 106:1453–1459

    Article  PubMed  CAS  Google Scholar 

  6. Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M, Keck PE, Marangell LB, Richardson AJ, Lake J, Stoll AL (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67:1954–1967

    Article  PubMed  CAS  Google Scholar 

  7. Garcia-Maroto F, Garrido-Cardenas JA, Michaelson LV, Napier JA, Alonso DL (2006) Cloning and molecular characterisation of a Δ8-sphingolipid-desaturase from Nicotiana tabacum closely related to Δ6-acyl-desaturases. Plant Mol Biol 64:241–250

    Article  Google Scholar 

  8. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and application. Tibtech 15:401–409

    Article  CAS  Google Scholar 

  9. Girke T, Schmidt H, Zahringer U, Reski R, Heinz E (1998) Identification of a novel Δ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J 15:39–48

    Article  PubMed  CAS  Google Scholar 

  10. Hernandez ML, Mancha M, Martinez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66:1417–1426

    Article  PubMed  CAS  Google Scholar 

  11. Hitz WD, Carlson TJ, Booth JR Jr, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641

    Article  PubMed  CAS  Google Scholar 

  12. Horrobin DF (1992) Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31:163–194

    Article  PubMed  CAS  Google Scholar 

  13. Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of Δ12- and Δ6-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae. Lipids 34:649–659

    Article  PubMed  CAS  Google Scholar 

  14. Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162

    PubMed  CAS  Google Scholar 

  15. Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillaroiphyceae). J Phycol 40:651–654

    Article  CAS  Google Scholar 

  16. Kaewsuwan S, Bunyapraphatsara N, Cove DJ, Quatrano RS, Chodok P (2010) High level production of adrenic acid in Physcomitrella patens using the algae Pavlova sp. Δ5-elongase gene. Bioresour Technol 101:4081–4088

    Article  PubMed  CAS  Google Scholar 

  17. Kaewsuwan S, Cahoon EB, Perroud PF, Wiwat C, Panvisavas N, Quatrano RS, Cove DJ, Bunyapraphatsara N (2006) Identification and functional characterization of the moss Physcomitrella patens Δ5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J Biol Chem 281:21988–21997

    Article  PubMed  CAS  Google Scholar 

  18. Kang J, Snapp AR, Lu C (2011) Identification of three genes encoding microsomal oleate desaturases (FAD2) from the oil seed crop Camelina sativa. Plant Physiol Biochem 49:223–229

    Article  PubMed  CAS  Google Scholar 

  19. Knight CD, Cove DJ, Cuming AC, Quatrano RS (2002) Moss gene technology. In: Gilmartin PM, Bowter C (eds) Molecular plant biology. Oxford University Press, NY, pp 285–302

    Google Scholar 

  20. Krasowska A, Dziadkowiec D, Polinceusz A, Plonka A, Lukaszewicz M (2007) Cloning of flax oleic fatty acid desaturase and its expression in yeast. J Am Oil Chem Soc 84:809–816

    Article  CAS  Google Scholar 

  21. Li L, Wang X, Gai J, Yu D (2007) Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol 164:1516–1526

    Article  PubMed  CAS  Google Scholar 

  22. Los DA, Murata N (1998) Structure and expression of fatty acid desaturase. Biochim Biophys Acta 1394:3–15

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Rivas JM, Garcoa-Diaz MT, Mancha M (2000) Temperature and oxygen regulation of microsomal desaturase (FAD2) from sunflower. Biochem Soc Trans 28:890–892

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Rivas JM, Sperling P, Luehs W, Heinz E (2001) Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Mol Breed 8:159–168

    Article  CAS  Google Scholar 

  25. McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  PubMed  CAS  Google Scholar 

  26. Mietkiewska E, Brost JM, Giblin EM, Francis T, Wang S, Reed D, Truksa M, Taylor DC (2006) A Tropaeolum majus FAD2 cDNA complements the fad2 mutation in, transgenic Arabidopsis plants. Plant Sci 171:187–193

    Article  CAS  Google Scholar 

  27. Miquel MF, Browse JA (1994) High-oleate oilseeds fail to develop at low temperature. Plant Physiol 106:421–427

    PubMed  CAS  Google Scholar 

  28. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    PubMed  CAS  Google Scholar 

  29. Passorn S, Laoteng K, Rachadawong S, Tanticharoen M, Cheevadhanarak S (1999) Heterologous expression of Mucor rouxii Δ12-desaturase gene in Saccharomyces cerevisiae. Biochem Biophys Res Commun 263:47–51

    Article  PubMed  CAS  Google Scholar 

  30. Pereira SL, Leonard AE, Mukeri P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent 68:97–106

    Article  CAS  Google Scholar 

  31. Peyou-Ndi MM, Watts JL, Browse J (2000) Identification and characterization of an animal Δ12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch Biochem Biophys 376:399–408

    Article  PubMed  CAS  Google Scholar 

  32. Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ12-fatty acid desaturase (FAD2). Biochim Biophys Acta 1522:122–129

    Article  PubMed  CAS  Google Scholar 

  33. Sakamoto T, Higshi S, Wada H, Murata N, Brayand DA (1994) Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol 26:249–263

    Article  PubMed  CAS  Google Scholar 

  34. Sakamoto T, Wada H, Nishida M, Ohmori M, Murata N (1994) Identification of conserved domains in the Δ12 desaturases of cyanobacteria. Plant Mol Biol 24:643–650

    Article  PubMed  CAS  Google Scholar 

  35. Sanchez-Garcia A, Mancha M, Heinz E, Martinez-Rivas JM (2004) Differential temperature regulation of three sunflower microsomal oleate desaturase (FAD2) isoforms overexpressed in Saccharomyces cerevisiae. Eur J Lipid Sci Technol 106:583–590

    Article  CAS  Google Scholar 

  36. Samiento C, Garces R, Mancha M (1998) Oleate destauration and acyl turnover in sunflower (Helianthus annuus L.) seed lipids during rapid temperature adaptation. Planta 205:595–600

    Article  Google Scholar 

  37. Sayanova O, Haslam R, Guschina I, Lloyd D, Christie WW, Harwood JL, Napier JA (2006) A bifunctional Δ12, Δ15-desaturase from Acanthamoeba castellanii directs the synthesis of highly unusual n-1 series unsaturated fatty acids. J Biol Chem 281:36533–36541

    Article  PubMed  CAS  Google Scholar 

  38. Sayanova OV, Napier JA (2004) Eicosapentaenoic acid; biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65:147–158

    Article  PubMed  CAS  Google Scholar 

  39. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  PubMed  CAS  Google Scholar 

  40. Shanklin J, Achim C, Schmidt H, Fox BG, Munck E (1997) Mossbauer studies of alkane-hydroxylase: evidence for a diiron cluster in an integral membrane enzyme. Proc Natl Acad Sci USA 94:2981–2986

    Article  PubMed  CAS  Google Scholar 

  41. Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  PubMed  CAS  Google Scholar 

  42. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune disease. J Am Coll Nutr 21:495–505

    Article  PubMed  CAS  Google Scholar 

  43. Sperling P, Libisch B, Zahringer U, Napier JA, Heinz E (2001) Functional identification of a Δ8-sphingolipid desaturase from Borago officinalis. Arch Biochem Biophys 388:293–298

    Article  PubMed  CAS  Google Scholar 

  44. Tang GQ, Novitzky WP, Carol Griffin H, Huber SC, Dewey RE (2005) Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. Plant J 44:433–446

    Article  PubMed  CAS  Google Scholar 

  45. Ueshima H, Stamler J, Elliott P, Brown IJ, Carnethon MR, Daviglus ML, He K, Moag-Stahlberg A, Rodriguez BL, Steffen LM, VanHom L, Yarnell J, Zhou B (2007) Food omega-3 fatty acid intake of individuals (total, linolenic acid, long-chain) and their blood pressure INTERMAP study. Hypertension 50:313–319

    Article  PubMed  CAS  Google Scholar 

  46. Vasudev PG, Banerjee M, Ramakrishnan C, Balaram P (2012) Asparagine and glutamine differ in their propensities to form specific side chain-backbone hydrogen bonded motifs in proteins. Proteins 80:991–1002

    Article  PubMed  CAS  Google Scholar 

  47. Vigh L, Los DA, Horvath I, Murata N (1993) The primary signal in the biological perception of temperature: pd-cattalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90:9090–9094

    Article  PubMed  CAS  Google Scholar 

  48. Von Schacky C (2006) A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels. Vasc Health Risk Manag 2:251–262

    Article  Google Scholar 

  49. Wei D, Li M, Zhang X, Ren Y, Xing L (2004) Identification and characterization of a novel Δ12-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett 573:45–50

    Article  PubMed  CAS  Google Scholar 

  50. Zank TK, Zahringer U, Beckmann C, Pohnert G, Boland W, Holtorf H, Reski R, Lerchl J, Heinz E (2002) Cloning and functional characterisation of an enzyme involved in the elongation of Δ6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J 31:255–268

    Article  PubMed  CAS  Google Scholar 

  51. Zhang JT, Zhu JQ, Zhum Q, Liu H, Gao XS, Zhang HX (2009) Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 390:469–474

    Article  PubMed  CAS  Google Scholar 

  52. Zhang S, Sakuradani E, Ito K, Shimizu S (2007) Identication of a novel bifunctional Δ12/Δ15 fatty acid desaturase from a basidiomycete, Coprinus cinereus TD#822-2. FEBS Lett 581:315–319

    Article  PubMed  CAS  Google Scholar 

  53. Zhou XR, Horne I, Damcevski K, Haritos V, Green A, Singh S (2008) Isolation and functional characterization of two independently-evolved fatty acid Δ12-desaturase genes from insects. Insect Mol Biol 17:667–676

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Prince of Songkla University (PSU, PHA540648S), the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (PHA5405395), and the Marine Natural Products Research Unit (MNP) at the Faculty of Pharmaceutical Sciences, PSU. We gratefully acknowledge Assist. Prof. Dr. Akkharawit Kanjana-Opas for providing the laboratory facilities and also thank Dr. Brian Hodgson of PSU for assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sireewan Kaewsuwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chodok, P., Eiamsa-ard, P., Cove, D.J. et al. Identification and functional characterization of two Δ12-fatty acid desaturases associated with essential linoleic acid biosynthesis in Physcomitrella patens . J Ind Microbiol Biotechnol 40, 901–913 (2013). https://doi.org/10.1007/s10295-013-1285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1285-3

Keywords

Navigation