Skip to main content
Log in

Identification and characterization of Δ12 and Δ12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fatty acid desaturases play vital roles in the synthesis of unsaturated fatty acids. In this study, Δ12 and Δ12/Δ15 fatty acid desaturases of the oleaginous yeast Lipomyces starkeyi, termed LsFad2 and LsFad3, respectively, were identified and characterized. Saccharomyces cerevisiae expressing LsFAD2 converted oleic acid (C18:1) to linoleic acid (C18:2), while a strain of LsFAD3-expressing S. cerevisiae converted oleic acid to linoleic acid, and linoleic acid to α-linolenic acid (C18:3), indicating that LsFad2 and LsFad3 were Δ12 and bifunctional Δ12/Δ15 fatty acid desaturases, respectively. The overexpression of LsFAD2 in L. starkeyi caused an accumulation of linoleic acid and a reduction in oleic acid levels. In contrast, overexpression of LsFAD3 induced the production of α-linolenic acid. Deletion of LsFAD2 and LsFAD3 induced the accumulation of oleic acid and linoleic acid, respectively. Our findings are significant for the commercial production of polyunsaturated fatty acids, such as ω-3 polyunsaturated fatty acids, in L. starkeyi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Angelis LD, Rinaldi T, Cirigliano A, Bell C, Reverberi M, Amaretti A, Montanari A, Santomartino R, Rainondi S, Gonzalez A, Bianchi MM (2016) Functional roles of the fatty acid desaturases encoded by KlOLE1, FAD2 and FAD3 in the yeast Kluyveromyces lactis. Microbiology 162:1435–1445

    Article  CAS  PubMed  Google Scholar 

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Avelange-Macherel MH, Macherel D, Wada H, Murata N (1995) Site-directed mutagenesis of histidine residues in the ∆ 12 acyl-lipid desaturase of Synechocystis. FEBS Lett 361, 111–114

    Article  CAS  PubMed  Google Scholar 

  • Bucek A, Matousková P, Sychrová H, Pichová I, Hrusková-Heidingsfeldová O (2014) ∆12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. PLoS One 9, e93322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calvey CH, Willis LB, Jeffries TW (2014) An optimized transformation protocol for Lipomyces starkeyi. Curr Genet 60:223–230

    Article  CAS  PubMed  Google Scholar 

  • Cui J, He S, Ji X, Lin L, Wei Y, Zhang Q (2016) Identification and characterization of a novel bifunctional ∆12/∆15-fatty acid desaturase gene from Rhodosporidium kratochvilovae. Biotechnol Lett 38, 1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Damude HG, Zhang H, Farrall L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional ∆12/ω3 fatty acid desaturases for improving the ratio of ω3 to ω6 fatty acids in microbes and plant. Proc Natl Acad Sci U S A 103, 9446–9451

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150

    Article  CAS  Google Scholar 

  • Henry SA, Kohlwein SD, Carman GM (2012) Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190:317–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horváth I, Török Z, Vígh L, Kates M (1991) Lipid hydrogenation induces elevated 18:1-CoA desaturase activity in Candida lipolytica microsomes. Biochim Biophys Acta 1085:126–130

    Article  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of ∆12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23, 605–612

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K (2006) Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 70:646–653

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97:7345–7355

    Article  CAS  PubMed  Google Scholar 

  • Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61

    Article  CAS  PubMed  Google Scholar 

  • Lee KR, Lee Yongjik, Kim EH, Lee SB, Roh KH, Kim JB, Kang HC, Kim HU (2016) Functional identification of oleate 12-desaturase and ω3-fatty acid desaturase genes from Perilla frutescens var. frutescens. Plant Cell Rep 35, 2523–2537

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC t method. Methods 25, 402–408

    Article  CAS  PubMed  Google Scholar 

  • Lomascolo A, Dubreucq E, Galzy P (1996) Study of the delta 12-desaturase system of Lipomyces starkeyi. Lipids 31:253–259

    Article  CAS  PubMed  Google Scholar 

  • Martin CE, Oh CS, Jiang Y (2007) Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim Biophys Acta 1771:271–285

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Sakaguchi K, Hamagushi R, Kobayashi T, Abe E, Hama Y, Hayashi M, Honda D, Okita Y, Sugimoto S, Okino N, Ito M (2012) Analysis of ∆12 fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304. J Lipid Res 53, 1201–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267:1502–1509

    CAS  PubMed  Google Scholar 

  • Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17:646–653

    Article  PubMed  Google Scholar 

  • Oguro Y, Yamazaki H, Shida Y, Ogasawara W, Takagi M, Takaku H (2015) Multicopy integration and expression of heterologous genes in the oleaginous yeast, Lipomyces starkeyi. Biosci Biotechnol Biochem 79:512–515

    Article  CAS  PubMed  Google Scholar 

  • Oguro Y, Yamazaki H, Ara S, Shida Y, Ogasawara W, Takagi M, Takaku H (2017) Efficient gene targeting in non-homologous end-joining-deficient Lipomyces starkeyi strains. Curr Genet 63:751–763

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radovanovic N, Thambugala D, Duguid S, Loewen E, Cloutier S (2014) Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isofprms expressed in yeast reveals a broad diversity in activity. Mol Biotechnol 56:609–620

    Article  CAS  PubMed  Google Scholar 

  • Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Göker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk HP, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechologically important yeasts. Proc Natl Acad Sci U S A 113:9882–9887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuadani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of ∆12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261, 812–820

  • Sangwallek J, Kaneko Y, Tsukamoto T, Marui M, Sugiyama M, Ono H. Bamba T, Fukusaki E, Harashima S (2014) Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding ∆12- and ∆15-fatty acid desaturases in Hansenula polymorpha. Gene 533, 110–118

    Article  CAS  PubMed  Google Scholar 

  • Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD (2000) Elo1p-dependent carboxy-terminal elongation of C14:1Δ9 to C16:1Δ11 fatty acids in Saccharomyces cerevisiae. J Bacteriol 182, 3655–3660

  • Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids1. Annu Rev Plant Physiol Plant Mol Biol 49:611–641

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Achim C, Schmidt H, Fox BG, Münck E (1997) Mössbauer studies of alkane ω-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 94, 2981–2986

    Article  CAS  Google Scholar 

  • Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185

    Article  PubMed Central  PubMed  Google Scholar 

  • Spychalla JP, Kinney AJ, Browse J (1997) Identification of an animal ω-3 fatty acid desaturase by heterologous expression in Arabidopsis. Proc Natl Acad Sci U S A 94, 1142–1147

    Article  CAS  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544

    CAS  PubMed  Google Scholar 

  • Sun R, Gao L, Yu X, Zheng Y, Li D, Wang X (2016) Identification of a Δ12 fatty acid desaturase from oil palm (Elaeis guineensis Jacp.) involved in the biosynthesis of linoleic acid by heterologous expression in Saccharomyces cerevisiae. Gene 591, 21–26

    Article  CAS  PubMed  Google Scholar 

  • Toke DA, Martin CE (1996) Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem 271:18413–18422

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2013) ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use. Appl Microbiol Biotechnol 97, 10255–10262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe K, Oura T, Sakai H, Kajiwara S (2004) Yeast ∆12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem 68:721–727

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Li M, Zhang X, Ren Y, Xing L (2004) Identification and characterization of a novel ∆12-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett 573, 45–50

    Article  CAS  PubMed  Google Scholar 

  • Wei DS, Li MC, Zhang XX, Zhou H, Xing LJ (2006) A novel ∆12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115. Acta Biochim Pol 53:753–759

    CAS  PubMed  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Zhuo L, Mulan J, Xia W, Yangmin G, Yinbo Z, Fenghong H (2013) Clone and identification of bifunctional ∆12/∆15 fatty acid desaturase LKFAD15 from Lipomyces kononenkoae. Food Sci Biotechnol 22:573–576

    Article  CAS  Google Scholar 

  • Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H (2009) Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast 26:167–184

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Sakuradani E, Ito K, Shimizu S (2007) Identification of a novel bifunctional ∆12/∆15 fatty acid desaturase from a basidiomycete, Coprinus cinereus TD#822-2. FEBS Lett 581:315–319

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li M, Wei D, Xing L (2008) Identification and characterization of a novel yeast ω3-fatty acid desaturase acting on long-chain n-6 fatty acid substrates from Pichia pastoris. Yeast 25, 21–27

    Article  CAS  PubMed  Google Scholar 

  • Zhou XR, Green AG, Singh SP (2011) Caenorhabditis elegans ∆12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the ∆12 and ∆15 positions. J Biol Chem 286, 43644–43650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuro Yaoi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuzawa, T., Maehara, T., Kamisaka, Y. et al. Identification and characterization of Δ12 and Δ12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 102, 8817–8826 (2018). https://doi.org/10.1007/s00253-018-9345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9345-2

Keywords

Navigation