Skip to main content

Advertisement

Log in

Highly valuable microalgae: biochemical and topological aspects

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abd El-Baky HH, El Baz FK, El-Baroty GS (2003) Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotechnology 2:222–240

    Article  Google Scholar 

  2. Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    Article  CAS  Google Scholar 

  3. Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364

    Article  PubMed  CAS  Google Scholar 

  4. Ashokkumar V, Rengasamy R (2012) Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour Technol 104:394–399

    Article  PubMed  CAS  Google Scholar 

  5. Avila-Leon I, Chuei Matsudo M, Sato S, de Carvalho JCM (2012) Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J Appl Microbiol 112:1086–1094

    Article  PubMed  CAS  Google Scholar 

  6. Banerjee A, Sharma R, Chisti Y, Benerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  PubMed  CAS  Google Scholar 

  7. Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. Ann Rev Biochem 22:110–180

    Google Scholar 

  8. Basaca-Loya GA, Valdez MA, Enriquez-Guevara EA, Gutierrez-Millan LE, Burboa MG (2009) Extraction and purification of B-phycoerythrin from the red microalga Rhodosorus marinus. Cienc Mar 35:359–368

    Google Scholar 

  9. Beale SI (1993) Biosynthesis of phycobilins. Chem Rev 93:785–802

    Article  CAS  Google Scholar 

  10. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  PubMed  CAS  Google Scholar 

  11. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126

    Article  CAS  Google Scholar 

  12. Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from D. bardawil (Chlorophyceae). J Phycol 18:529–537

    Article  CAS  Google Scholar 

  13. Berge JP, Gouygou JP, Dubacq JP, Durand P (1995) Reassessment of lipid-composition of the diatom, skeletonema costatum. Phytochemistry 39:1017–1021

    Article  CAS  Google Scholar 

  14. Bergman B (1981) Glyoxylate decreases the oxygen sensitivity of nitrogenase activity and photosynthesis in the cyanobacterium Anabaena cylindrical. Planta 152:302–306

    Article  CAS  Google Scholar 

  15. Bergman B (1986) Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrical. Plant Physiol 80:698–701

    Article  PubMed  CAS  Google Scholar 

  16. Bermejo R, Alvarez-Pez JM, Acien Fernandez FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85

    Article  Google Scholar 

  17. Bermejo R, Talavera EM, Alvarez-Pez JM (2001) Chromatographic purification and characterization of b-phycoerythrin from Porphyridium cruentum: semipreparative HPLC separation and characterization of its subunits. J Chromatogr A 917:35–45

    Google Scholar 

  18. Bertheas O, Metzger P, Largeau C (1998) A high molecular weight complex lipid, aliphatic polyaldehyde tetraterpenediol polyacetal from Botryococcus braunii (L race). Phytochemistry 50:85–96

    Article  Google Scholar 

  19. Bondioli P, Bella LD, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 114:567–572

    Article  PubMed  CAS  Google Scholar 

  20. Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304

    CAS  Google Scholar 

  21. Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    Article  CAS  Google Scholar 

  22. Bujard E, Baco U, Mauron J, Mottu F, Nabholtz A, Wuhrmann JJ, Clément G (1970) Composition and nutritive value of blue green algae (Spirulina) and their possible use in food formulations. In: 3rd International Congress of Food Science and Technology, Washington, DC

  23. Çelekli A, Balci M (2009) The influence of different phosphate and nitrate concentrations on growth, protein and chlorophyll a content of Scenedesmus obliquus. Fresenius Environ Bull 18:1363–1366

    Google Scholar 

  24. Cha KH, Koo SY, Lee DU (2008) Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem 56:10521–10526

    Article  PubMed  CAS  Google Scholar 

  25. Challouf R, Trabelsi L, Ben Dhieb R, El Abed O, Yahia A, Ghozzi K, Ben Ammer G, Omran H, Ben Ouada H (2011) Evaluation of cytotoxicity and biological activity in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838

    Article  CAS  Google Scholar 

  26. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  PubMed  CAS  Google Scholar 

  27. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  28. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  PubMed  CAS  Google Scholar 

  29. Choi KJ, Nakhost Z, Barzana E, Karel M (1987) Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus. Food Biotechnol 1:117–128

    Article  PubMed  CAS  Google Scholar 

  30. Choi WY, Oh SH, Seo YC, Kim GB, Kang DH, Lee SY, Jung KH, Cho JS, Ahn JH, Choi GP, Lee HY (2011) Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol Bioprocess Eng 16:946–955

    Article  CAS  Google Scholar 

  31. Cohen Z (1990) The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J Am Oil Chem Soc 67:916–920

    Article  CAS  Google Scholar 

  32. Cohen Z, Khozin-Goldberg I, Adlerstein D, Bigogno C (2002) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743

    Article  Google Scholar 

  33. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  34. Dai J, Wu Y, Chen SW, Zhu S, Yin HP, Wang M, Tang J (2010) Sugar composition determination of polysaccharides from Dunalielle salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohyd Polym 82:639–635

    Google Scholar 

  35. Dayananda C, Sarada R, Kumar V, Ravishankar GA (2007) Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electron J Biotechnol 10:1–14

    Article  Google Scholar 

  36. Dayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31:87–93

    Article  CAS  Google Scholar 

  37. Dillon JC, Phan PA (1993) Spirulina as a source of proteins in human nutrition. In: Doumengue F, Durand-Chastel H, Toulemont A (eds) Spiruline algue de vie Musée Océanographique, vol 12. Bulletin de l′Institut Océanographique Monaco, pp 103–107

  38. Durmaz Y, Monteiro M, Bandarra N, Gökpinaret Ş, Işik O (2007) The effect of low temperature on fatty acid composition and tocopherols of the red microalga Porphyridium cruentum. J Appl Phycol 19:223–227

    Article  CAS  Google Scholar 

  39. Fabregas J, Garcia D, Fernandez AM, Rocha AI, Gomez P, Escribano JM, Otero A, Coll JM (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Res 44:67–73

    Article  PubMed  CAS  Google Scholar 

  40. Fabregas J, Patifio M, Vecino E, Chfizaro F, Otero A (1995) Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl Microbiol Biotechnol 43:617–621

    Article  CAS  Google Scholar 

  41. Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105

    Article  PubMed  CAS  Google Scholar 

  42. Frenz J, Largeau C, Casadevall E, Kollerup F, Daugulis AJ (1989) Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii. Biotechnol Bioeng 34:755–762

    Article  PubMed  CAS  Google Scholar 

  43. Guaratini T, Cardozo KHM, Pinto E, Colepicolo P (2009) Comparison of diode array and electrochemical detection in the C30 reverse phase HPLC analysis of algae carotenoids. J Braz Chem Soc 20:1609–1616

    Article  CAS  Google Scholar 

  44. Garcia-Gonzales M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in closed tubular photobioreactor. J Biotechnol 115:81–90

    Article  CAS  Google Scholar 

  45. Gastineau R, Pouvreau JB, Hellio C, Morançais M, Fleurence J, Gaudin P, Bourgougnon N, Mouget JL (2012) Biological activities of purified marennine, the blue pigment responsible for the greening of oysters. J Agric Food Chem 60:3599–3605

    Article  PubMed  CAS  Google Scholar 

  46. Gloaguen V, Ruiz G, Morvan H, Mouradi-Givernaud A, Maes E, Krausz P, Strecker G (2004) The extracellular polysaccharide of Porphyridium sp.: an NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr Res 339:97–103

    Article  PubMed  CAS  Google Scholar 

  47. Gomez-Villa H, Voltolina D, Nieves M, Pina P (2005) Biomass production and nutrient budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae) in artificial wastewater, under the winter and summer conditions of Mazatlán, Sinaloa, Mexico. Vie et Milieu 55:121–126

    Google Scholar 

  48. González López CV, Cerón García MDC, Acién Fernández FG, Segovia Bustos C, Chisti Y, Fernández Sevilla JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  CAS  Google Scholar 

  49. Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT, Palavra AF (2007) Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem 101:717–723

    Article  CAS  Google Scholar 

  50. Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J (1996) Evolution of pigment composition in Chlorella vulgaris. Bioresour Technol 57:157–163

    Article  CAS  Google Scholar 

  51. Grung M, D’Souza F, Borowitzka M, Liaaen-Jensen S (1992) Algal carotenoids: 1. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4:165–171

    Article  CAS  Google Scholar 

  52. Hagen C, Braune W, Bjorn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a sunshade. J Phycol 30:241–248

    Article  CAS  Google Scholar 

  53. Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J Photochem Photobiol B Biol 20:153–160

    Article  CAS  Google Scholar 

  54. Hagen C, Grünewald K (2000) Fosmidomycin as an inhibitor of the non-mevalonate terpenoid pathway depresses synthesis of secondary carotenoids in flagellates of the green alga Haematococcus pluvialis. J Appl Bot 74:137–140

    CAS  Google Scholar 

  55. Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-Herpes Simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retroviruses 12:1463–1471

    Article  PubMed  CAS  Google Scholar 

  56. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  PubMed  CAS  Google Scholar 

  57. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  58. Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376

    Article  CAS  Google Scholar 

  59. Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Technol 132:163–169

    Article  CAS  Google Scholar 

  60. Jaouen P, Lépine B, Rossignol N, Royer R, Quemeneur F (1999) Clarification and concentration with membrane technology of a phycocyanin solution extracted from Spirulina platensis. Biotechnol Tech 13:877–881

    Article  CAS  Google Scholar 

  61. Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119

    Article  Google Scholar 

  62. Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    Article  PubMed  CAS  Google Scholar 

  63. Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83:823–833

    Article  CAS  Google Scholar 

  64. Kobyashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferm Bioeng 71:335–339

    Article  Google Scholar 

  65. Lankester R (1986) On green oysters. Q J Microsc Sci 26:71–94

    Google Scholar 

  66. Laroche C, Michaud P (2007) New developments and prospective applications for β (1,3) glucans. Rec Pat Biotechnol 1:59–73

    Article  CAS  Google Scholar 

  67. Laws EA, Pei S, Bienfang P, Grant S (2011) Phosphate-limited growth and uptake kinetics of the marine prasinophyte Tetraselmis suecica (Kylin) Butcher. Aquaculture 322–323:117–121

    Article  CAS  Google Scholar 

  68. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77

    Article  PubMed  CAS  Google Scholar 

  69. Lehninger AL, Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. W.H. Freeman, New York

    Google Scholar 

  70. Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Cambridge

  71. Levy-Ontman O, Arad SM, Harvey DJ, Parsons TB, Fairbanks A, Tekoah Y (2011) Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp. J Biol Chem 286:24340–21352

    Google Scholar 

  72. Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    Article  PubMed  CAS  Google Scholar 

  73. Liu Y, Wang W, Zhang M, Xing P, Yang Z (2010) PSII-efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux. Biochem Syst Ecol 38:292–299

    Article  CAS  Google Scholar 

  74. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  PubMed  CAS  Google Scholar 

  75. Mahboob S, Rauf A, Ashraf M, Sultana T, Sultana S, Jabeen F, Rajoka MI, Alkaham Al-Balawi HF, Al-Ghanim KA (2012) High-density growth and crude protein productivity of a thermotolerant Chlorella vulgaris: production kinetics and thermodynamics. Aquacult Int 20:455–466

    Article  CAS  Google Scholar 

  76. Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  PubMed  CAS  Google Scholar 

  77. Mandal S, Mallick N (2011) Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl Environ Microbiol 77:374–377

    Article  PubMed  CAS  Google Scholar 

  78. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  79. Mendes RL, Fernandes HL, Coelbo JP, Reis EC, Cabral JMS, Novais JM, Palavra AF (1995) Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 53:99–103

    Article  CAS  Google Scholar 

  80. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  81. Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24

    Article  Google Scholar 

  82. Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  83. Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857

    Article  CAS  Google Scholar 

  84. Neuville D, Daste PH (1978) Recherche sur le déterminisme de la production de marennine par la diatomée marine Navicula ostrearia (Gaillon) Bory en culture in vitro. Revue Générale de Botanique 85:255–303

    Google Scholar 

  85. Nomoto K, Yokokura T, Satoh H, Mutai M (1983) Anti-tumor effect by oral administration of Chlorella extract, PCM-4 by oral admission. Gan To Kagaku Zasshi 10:781–785

    CAS  Google Scholar 

  86. Ogawa K, Ikeda Y, Kondo S (1999) A new trisaccharide, alpha-d-glucopyranuronosyl-(1 → 3)-alpha-l-rhamnopyranosyl-(1 → 2)-alpha-l-rhamnopyranose from Chlorella vulgaris. Carbohydr Res 321:128–131

    Article  CAS  Google Scholar 

  87. Oliver DJ, Zelitch I (1977) Metabolic regulation of glycolate synthesis, photorespiration, and net photosynthesis in tobacco by l-glutamate. Plant Physiol 59:688–694

    Article  PubMed  CAS  Google Scholar 

  88. Olofsson M, Lamela T, Nilsson E, Bergé JP, del Pino V, Uronen P, Legrand C (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592

    Article  CAS  Google Scholar 

  89. Patel AK, Laroche C, Marcati A, Ursu AV, Jubeau S, Marchal L, Petit E, Djelveh G, Michaud P (2013) Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresource Technol (in press)

  90. Patel A, Mishr S, Pawar R, Ghosh PK (2005) Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expres Purif 40:248–255

    Article  CAS  Google Scholar 

  91. Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281

    Article  Google Scholar 

  92. Pouvreau JB, Morançais M, Massé G, Rosa P, Robert JM, Fleurence J, Pondaven P (2006) Purification of the blue-green pigment “marennine” from the marine tychopelagic diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J Appl Phycol 18:769–781

    Article  CAS  Google Scholar 

  93. Pouvreau JB, Morançais M, Taran F, Rosa P, Dufossé L, Guérard F, Pin S, Fleurence J, Pondaven P (2008) Antioxidant and free radical scavenging properties of marennine, a blue-green polyphenolic pigment from the diatom Haslea ostrearia (Gaillon/Bory) Simonsen responsible for the natural greening of cultured oysters. J Agric Food Chem 56:6278–6286

    Article  PubMed  CAS  Google Scholar 

  94. Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell Scientific Publications, Boston, pp 458–492

    Google Scholar 

  95. Ranga Rao A, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  PubMed  CAS  Google Scholar 

  96. Ranson G (1927) L’absorption de matières organiques dissoutes par la surface extérieure du corps chez les animaux aquatiques. Annales de l’Institut Océanographique 4:49–174

    Google Scholar 

  97. Raposo MPJ, Morais RMSC, Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252

    Article  PubMed  Google Scholar 

  98. Rebolloso Fuentes MM, Acien Fernandez GG, Sanchez Perez JA, Guil Guerrero JL (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353

    Article  CAS  Google Scholar 

  99. Rossignol N, Jaouen P, Robert JM, Quéméneur F (2000) Production of exocellular pigment by the marine diatom Haslea ostrearia Simonsen in a photobioreactor equipped with immersed ultrafiltration membranes. Bioresour Technol 73:197–200

    Article  CAS  Google Scholar 

  100. Ruen-Ngam D, Shotipruk A, Pavasant P, Machmudah S, Goto M (2012) Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol 35:255–260

    Article  CAS  Google Scholar 

  101. Ruiz-Martin A, Mendoza-Espinosa G, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  Google Scholar 

  102. Sakamoto K, Baba M, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22. Bioresour Technol 110:474–479

    Article  PubMed  CAS  Google Scholar 

  103. Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on Phycocyanin. Process Biochem 34:795–801

    Article  CAS  Google Scholar 

  104. Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127

    Article  PubMed  CAS  Google Scholar 

  105. Seyfabadi J, Ramezanpouret Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726

    Article  CAS  Google Scholar 

  106. Singh S, Arad SM, Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275

    Article  CAS  Google Scholar 

  107. Sommer TR, Pott WT, Morrisey NM (1991) Utilization of microalgae astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88

    Article  CAS  Google Scholar 

  108. Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623

    Article  PubMed  CAS  Google Scholar 

  109. Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908

    Article  CAS  Google Scholar 

  110. Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692

    Article  CAS  Google Scholar 

  111. Sun L, Wang C, Shi QJ, Ma CH (2009) Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 45:42–47

    Article  PubMed  CAS  Google Scholar 

  112. Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87:1206–1210

    Article  CAS  Google Scholar 

  113. Thornton DCO (2002) Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol 37:149–161

    Article  Google Scholar 

  114. Tonon T, Harvey D, Larson TR, Graham IA (2002) Long-chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  PubMed  CAS  Google Scholar 

  115. Trabelsi L, Ben Houada H, Zili F, Mazhoud N, Ammar J (2013) Evaluation of Arthrospira platensis extracellular polymeric substance production in photoautotrophic, heterotrophic and mixotrophic conditions. Folia Microbiol 58:39–45

    Article  CAS  Google Scholar 

  116. Trabelsi L, M’sakni NH, Ben Houada H, Bacha H, Roudesli S (2009) Partial characterization of extracellular polysaccharide produced by Arthrospira platensis. Biotechnol Bioprocess Eng 14:27–31

    Article  CAS  Google Scholar 

  117. Uslu L, Isik O, Koç K, Göksan T (2011) The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afr J Biotechnol 10:386–389

    CAS  Google Scholar 

  118. Velea S, Ilie L, Filipescu L (2011) Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. U.P.B. Sci Bull Ser B 73:86–94

    Google Scholar 

  119. Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162:3–12

    Article  PubMed  CAS  Google Scholar 

  120. Vílchez C, Garbayo I, Lobato MV, Vega JM (2007) Microalgae-mediated chemicals production and wastes removal. Enzyme Microb Technol 20:562–572

    Article  Google Scholar 

  121. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  122. Wilson MA, Batts BD, Hatcher PG (1988) Molecular composition and mobility of torbanite precursors: implications for the structure of coal. Energy Fuels 2:668–672

    Article  CAS  Google Scholar 

  123. Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26:352–360

    Article  PubMed  CAS  Google Scholar 

  124. Yeh KL, Chang JS (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Biochem Eng J 64:1–7

    Article  CAS  Google Scholar 

  125. Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Michaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pignolet, O., Jubeau, S., Vaca-Garcia, C. et al. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40, 781–796 (2013). https://doi.org/10.1007/s10295-013-1281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1281-7

Keywords

Navigation