Skip to main content

Advertisement

Log in

Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  2. Balakumar S, Arasaratnam V, Balasubramaniam K (2001) Isolation and improvement of a thermotolerant Saccharomyces cerevisiae strain. World J Microbiol Biotechnol 17:739–746

    Article  CAS  Google Scholar 

  3. de Virgillo C, Piper PW, Boller T, Wiemken A (1991) Acquisition of thermotolerance in Saccharomyces cerevisiae without heat shock proteins 104 and in the absence of protein synthesis. FEBS Lett 228:86–90

    Google Scholar 

  4. Eastmond DL, Nelson HC (2006) Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. J Biol Chem 281:32909–32921

    Article  PubMed  CAS  Google Scholar 

  5. Ezeronye OU, Okerentugba PO (2001) Optimum conditions for yeast protoplast release and regeneration in Saccharomyces cerevisiae and Candida tropicalis using gut enzymes of the giant African snail Achatina achatina. Lett Appl Microbiol 32:190–193

    Article  PubMed  CAS  Google Scholar 

  6. Fujita Y, Ito J (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  PubMed  CAS  Google Scholar 

  7. Gera R, Dhamija SS, Gera T, Dalel S (1997) Intergeneric ethanol producing hybrids of thermotolerant Kluyveromyces and non-thermotolerant Saccharomyces cerevisiae. Biotechnol Lett 19:189–19313

    Article  CAS  Google Scholar 

  8. He XP, Huai WH, Tie CJ, Liu YF, Zhang BR (2000) Breeding of high ergosterol-producing yeast srains. J Ind Microbiol Biotechnol 25:39–44

    Article  CAS  Google Scholar 

  9. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  10. Hou L (2009) Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol Lett 31:671–677

    Article  PubMed  CAS  Google Scholar 

  11. Hou L (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093

    Article  PubMed  CAS  Google Scholar 

  12. John RP, Gangadharan D, Nampoothiri KM (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion. Bioresour Technol 99:8008–8015

    Article  PubMed  CAS  Google Scholar 

  13. Keating JD, Panganiban C, Mansfield SD (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206

    Article  PubMed  CAS  Google Scholar 

  14. Krisch J, Szajáni B (1997) Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti. Biotechnol Lett 19:525–528

    Article  CAS  Google Scholar 

  15. Lewis JG, Learmonth RP, Watson K (1993) The role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microbiol 59:1065–1071

    PubMed  CAS  Google Scholar 

  16. Lin FM, Qiao B, Yuan YJ (2009) Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Appl Environ Microbiol 75:3765–3776

    Article  PubMed  CAS  Google Scholar 

  17. Lindén T, Peetre J, Hahn-Hägerdal B (1992) Isolation and characterization of acetic acid-tolerant galactose fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl Environ Microbiol 58:1661–1669

    PubMed  Google Scholar 

  18. Mager WH, Ferreir PM (1993) Stress response of yeast. Biochem J 290:1–13

    PubMed  CAS  Google Scholar 

  19. Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  PubMed  CAS  Google Scholar 

  20. Paiva S, Althoff S, Casal M, Leão C (1999) Transport acetate in mutants of Saccharomyces cerevisiae defective in monocarboxylate permeases. FEMS Microbiol Lett 170:301–306

    Article  PubMed  CAS  Google Scholar 

  21. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  PubMed  CAS  Google Scholar 

  22. Phowchinda O, Delia-Dupuy ML, Strehaiano P (1995) Effects of acetic acid on growth and fermenting activity of Saccharomyces cerevisiae. Biotechnol Lett 17:237–242

    Article  CAS  Google Scholar 

  23. Rajoka MI, Ferhan M, Khalid AM (2005) Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor. Lett Appl Microbiol 40:316–321

    Article  PubMed  CAS  Google Scholar 

  24. Shi D, Wang C, Wang K (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  PubMed  CAS  Google Scholar 

  25. Sridhar M, Sree NK, Rao LV (2002) Effect of UV radiation on thermotolerance ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresour Technol 83:199–202

    Article  PubMed  CAS  Google Scholar 

  26. Trevisol ETV, Panek AD, Mannarino SC, Eleutherio ECA (2011) The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90:697–704

    Article  PubMed  CAS  Google Scholar 

  27. Wei P, Li Z, Lin Y, He P, Jiang N (2007) Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Biotechnol Lett 29:1501–1508

    Article  PubMed  CAS  Google Scholar 

  28. Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120

    Article  PubMed  CAS  Google Scholar 

  29. Yamamoto N, Maeda Y, Ikeda A, Sakurai H (2008) Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. Eukaryot Cell 7:783–790

    Article  PubMed  CAS  Google Scholar 

  30. Zhang JG, Liu XY, He XP, Guo XN, Lu Y, Zhang BR (2010) Improvement of acetic acid tolerance and fermentation performance of diploid ethanologenic yeast by disruption of the FPS1 aquaglyceroporin gene. Biotechnol Lett 33:277–284

    Article  PubMed  CAS  Google Scholar 

  31. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX1-YW-11-C4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Ping He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Cheng, YF., He, XP. et al. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol 39, 73–80 (2012). https://doi.org/10.1007/s10295-011-1001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1001-0

Keywords

Navigation