Skip to main content
Log in

Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Cinnamic acid production was demonstrated using Streptomyces as a host. A gene encoding phenylalanine ammonia lyase (PAL) from Streptomyces maritimus was introduced into Streptomyces lividans, and its expression was confirmed by Western blot analysis. After 4 days cultivation using glucose as carbon source, the maximal level of cinnamic acid reached 210 mg/L. When glycerol (30 g/L) was used as carbon source, the maximal level of produced cinnamic acid reached 450 mg/L. In addition, using raw starch, xylose or xylan as carbon source, the maximal level of cinnamic acid reached 460, 300, and 130 mg/L, respectively. We demonstrated that S. lividans has great potential to produce cinnamic acid as well as other aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  2. Bustos G, Moldes AB, Cruz JM, Domínguez JM (2005) Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol Prog 21:793–798

    Article  PubMed  CAS  Google Scholar 

  3. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39

    Article  PubMed  Google Scholar 

  4. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  PubMed  CAS  Google Scholar 

  5. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1995) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich

    Google Scholar 

  6. Hurtubise Y, Shareck F, Kluepfel D, Morosoli R (1995) A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol Microbiol 17:367–377

    Article  PubMed  CAS  Google Scholar 

  7. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnol 21:526–531

    Article  Google Scholar 

  8. Ikeda H, Kotaki H, Omura S (1987) Genetic studies of avermectin biosynthesis in Streptomyces avermitilis. J Bacteriol 169:5615–5621

    PubMed  CAS  Google Scholar 

  9. Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM (2010) Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of l-valine productivity. Appl Environ Microbiol 76:370–374

    Article  PubMed  CAS  Google Scholar 

  10. Nijkamp K, van Luijk N, de Bont JAM, Wery J (2005) The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69:170–177

    Article  PubMed  CAS  Google Scholar 

  11. Noda S, Ito Y, Shimizu N, Tanaka T, Ogino C, Kondo A (2010) Over-production of various secretory-form proteins in Streptomyces lividans. Protein Expr Purif 73:198–202

    Article  PubMed  CAS  Google Scholar 

  12. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microbiol 74:7514–7521

    Article  PubMed  CAS  Google Scholar 

  13. Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009) Efficient production of optically pure D-lactic acid from raw corn starch by using genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467

    Article  PubMed  CAS  Google Scholar 

  14. Ogino C, Kanemasu M, Hayashi Y, Kondo A, Shimizu N, Tokuyama S, Tahara Y, Kuroda S, Tanizawa K, Fukuda H (2004) Over-expression system for secretory phospholipase D by Streptomyces lividans. Appl Microb Biotechnol 64:823–828

    Article  CAS  Google Scholar 

  15. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-Producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  PubMed  CAS  Google Scholar 

  16. Piel J, Hertweck C, Shipley PR, Hunt DM, Newman MS, Moore BS (2000) Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol 7:943–955

    Article  PubMed  CAS  Google Scholar 

  17. Sianidis G, Pozidis C, Becker F, Vrancken K, Sjoeholm C, Karamanou S, Takamiya-Wik M, van Mellaert L, Schaefer T, Anné J, Economou A (2006) Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. J Biotech 121:498–507

    Article  CAS  Google Scholar 

  18. Smith CP, Chater KF (1988) Cloning and transcription analysis of the entire glycerol utilization (gylABX) operon of Streptomyces coelicolor A3(2) and identification of a closely associated transcription unit. Mol Gen Genet 211:129–137

    Article  PubMed  CAS  Google Scholar 

  19. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production. Appl Environ Microbiol 76:7154–7160

    Article  PubMed  CAS  Google Scholar 

  20. Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K (2003) Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol 69:6412–6417

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury PF (2002) Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Appl Microbiol Biotechnol 60:160–167

    Article  PubMed  CAS  Google Scholar 

  22. Tateno T, Fukuda H, Kondo A (2007) Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541

    Article  PubMed  CAS  Google Scholar 

  23. Vannelli T, Qi WW, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9:142–151

    Article  PubMed  CAS  Google Scholar 

  24. Wang G, Inaoka T, Okamoto S, Ochi K (2009) A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother 53:1019–1026

    Article  PubMed  CAS  Google Scholar 

  25. Xiang L, Moore BS (2005) Biochemical characterization of a Prokaryotic Phenylalanine Ammonia Lyase. J Bacteriol 187:4286–4289

    Article  PubMed  CAS  Google Scholar 

  26. Xiang L, Moore BS (2002) Inactivation, complementation, and Heterologous expression of encP, a Novel Bacterial Phenylalanine Ammonia-Lyase Gene. J Biol Chem 277:32505–32509

    Article  PubMed  CAS  Google Scholar 

  27. Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1497

    Article  PubMed  CAS  Google Scholar 

  28. Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2010) Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Special Coordination Funds for Promoting Science and Technology, Creation of Innovation Centers for Advanced Interdisciplinary Research Areas (Innovation Bioproduction Kobe), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Ogino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, S., Miyazaki, T., Miyoshi, T. et al. Cinnamic acid production using Streptomyces lividans expressing phenylalanine ammonia lyase. J Ind Microbiol Biotechnol 38, 643–648 (2011). https://doi.org/10.1007/s10295-011-0955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0955-2

Keywords

Navigation