Skip to main content
Log in

Enhanced l-phenylalanine production by recombinant Escherichia coli BR-42 (pAP-B03) resistant to bacteriophage BP-1 via a two-stage feeding approach

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The l-phenylalanine (l-Phe) production by Escherichia coli WSH-Z06 (pAP-B03) was frequently prevented by bacteriophage BP-1 infestation. To cope with the bacteriophage BP-1 problem for an improved l-Phe production, one bacteriophage BP-1-resistant mutant, E. coli BR-42, was obtained from 416 mutant colonies of E. coli WSH-Z06 after N-methyl-N’-nitro-N-nitrosoguanidine (NTG) mutagenesis by selection for resistance to bacteriophage BP-1. The recombinant E. coli BR-42-carrying plasmid pAP-B03 had a high capacity in l-Phe production and a remarkable tolerance to 1 × 1010 pfu (plaque-forming unit)/ml bacteriophage stock. For an enhanced l-Phe production by E. coli BR-42 (pAP-B03), the effects of different feeding strategies including pH–stat, constant rate feeding, linear decreasing rate feeding, and exponential feeding on l-Phe production were investigated; and a two-stage feeding strategy, namely exponential feeding at μ set = 0.18 h−1 in the first 20 h and a following linear varying rate feeding with F = (−0.55 × t + 18.6) ml/h, was developed to improve l-Phe production. With this two-stage feeding approach, a maximum l-Phe titer of 57.63 g/l with a high l-Phe productivity (1.15 g/l/h) was achieved, which was 15% higher than the highest level (50 g/l) reported so far according to our knowledge. The recombinant E. coli BR-42 (pAP-B03) is a potential l-Phe over-producer in substantial prevention of bacteriophage BP-1 infestation compared to its parent strain WSH-Z06 (pAP-B03).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albert MJ, Bhuiyan NA, Rahman A, Ghosh AN, Hultenby K, Weintraub A, Nahar S, Kibriya AK, Ansaruzzaman M, Shimada T (1996) Phage specific for Vibrio cholerae O139 Bengal. J Clin Microbiol 34:1843–1845

    PubMed  CAS  Google Scholar 

  2. Baez-Viveros JL, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524

    Article  PubMed  CAS  Google Scholar 

  3. Backman K, O’Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R, Venkatasubramanian K (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann N Y Acad Sci 589:16–24

    Article  PubMed  CAS  Google Scholar 

  4. Esquinas-Rychen M, Erni B (2001) Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phospho enol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370

    PubMed  CAS  Google Scholar 

  5. Forberg C, Haggstrom L (1987) Effects of cultural conditions on the production of phenylalanine from a plasmid-harboring E. coli strain. Appl Microbiol Biotechnol 26:136–140

    Article  Google Scholar 

  6. Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R (2002) Process control for enhanced l-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80:746–754

    Article  PubMed  CAS  Google Scholar 

  7. Gerigk MR, Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R (2002) Enhanced pilot-scale fed-batch l-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioprocess Biosyst Eng 25:43–52

    Article  PubMed  CAS  Google Scholar 

  8. Hwang SO, Gil GH, Cho YJ, Kang KR, Lee JH, Bae JC (1985) The fermentation process for l-phenylalanine production using an auxotrophic regulatory mutant of Escherichia coli. Appl Microbiol Biotechnol 22:108–113

    Article  CAS  Google Scholar 

  9. Henderson JW, Ricker RD, Bidlingmeyer BA, Woodward C (2000) Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. USA (Agilent App Note 5980-1193E): Agilent Technologies

  10. Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    Article  PubMed  CAS  Google Scholar 

  11. Johnston W, Cord-Ruwisch R, Cooney MJ (2002) Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables. Bioprocess Biosyst Eng 25:111–120

    Article  PubMed  CAS  Google Scholar 

  12. Klaenhammer TR, Conkling MA, O’Sullivan D, Djordjevis G, Walker SA, Taylor CG (1998) Bacteriophage-triggered cell suicide systems and fermentation methods employing the same. US Patent 5792625

  13. Kim BS, Lee SC, Lee SY, Chang YK, Chang HN (2004) High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess Biosyst Eng 26:147–150

    Article  PubMed  CAS  Google Scholar 

  14. Konstantinov KB, Nishio N, Yoshida T (1990) Glucose feeding strategy accounting for the decreasing oxidative capacity of recombinant Escherichia coli in fed-batch cultivation for phenylalanine production. J Ferment Bioeng 70:253–260

    Article  CAS  Google Scholar 

  15. Lee J, Lee SY, Park S, Middelberg AP (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  PubMed  CAS  Google Scholar 

  16. Lee SB, Won CH, Park C, Lim BS (1994) A method for production of l-phenylalanine by recombinant E. coli. European Patent 0284185 B1

  17. Leng Y, Zheng P, Sun ZH (2006) Continuous production of l-phenylalanine from phenylpyruvic acid and l-aspartic acid by immobilized recombinant Escherichia coli SW0209–52. Process Biochem 41:1669–1672

    Article  CAS  Google Scholar 

  18. Ozcelik IS, Calik P, Calik G, Ozdamar TH (2004) Metabolic engineering of aromatic group amino acid pathway in Bacillus subtilis for l-phenylalanine production. Chem Eng Sci 59:5019–5026

    Article  Google Scholar 

  19. Romig WR, Brodetsky AM (1961) Isolation and preliminary characterization of bacteriophages for bacillus subtilis. J Bacteriol 82:135–141

    PubMed  CAS  Google Scholar 

  20. Ruffer N, Heidersdorf U, Kretzers I, Sprenger GA, Raeven L, Takors R (2004) Fully integrated l-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioprocess Biosyst Eng 26:239–248

    Article  PubMed  CAS  Google Scholar 

  21. Sprenger GA (2007) From scratch to value: engineering Escherichia coli wild type cells to the production of l-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75:739–749

    Article  PubMed  CAS  Google Scholar 

  22. Sugimoto S, Kato N, Kitaoka Y, Seki T, Yoshida T, Taguchi H (1990) Phenylalanine production by periodic induction of gene expression using a temperature-distributed dual fermenter system. J Ferment Bioeng 70:376–380

    Article  CAS  Google Scholar 

  23. Shu CH, Liao CC (2002) Optimization of l-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate. Biotechnol Bioeng 77:131–141

    Article  PubMed  CAS  Google Scholar 

  24. Thirion JP, Hofnung M (1972) On some genetic aspects of phage lambda resistance in E. coli K12. Genetics 71:207–216

    PubMed  CAS  Google Scholar 

  25. Takagi M, Nishio Y, Oh G, Yoshida T (1996) Control of l-phenylalanine production by dual feeding of glucose and l-tyrosine. Biotechnol Bioeng 52:653–660

    Article  PubMed  CAS  Google Scholar 

  26. Wong HH, Kim YC, Lee SY, Chang HN (1998) Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol Bioeng 60:271–276

    Article  PubMed  CAS  Google Scholar 

  27. Weikert C, Sauer U, Bailey JE (1998) Increased phenylalanine production by growing and nongrowing Escherichia coli strain CWML2. Biotechnol Prog 14:420–424

    Article  PubMed  CAS  Google Scholar 

  28. Yakandawala N, Romeo T, Friesen AD, Madhyastha S (2008) Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol 78:283–291

    Article  PubMed  CAS  Google Scholar 

  29. Zhou HY, Liao XY, Wang TW, Du GC, Chen J (2010) Enhanced l-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Bioresour Technol 101:4151–4156

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was supported by a grant from National Science Fund for Distinguished Young Scholars (No. 20625619), the Key Program of National Natural Science Foundation of China (No. 20836003), the Key Project of Chinese National Programs for Fundamental Research and Development (973 program, No. 2007CB71403), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0532), the Fundamental Research Funds for the Central Universities (No. JUSRP10917), the Fundamental Research Funds for the Central Universities (No. JUSRP30901), and 973 Project (2010CB535014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianwen Wang or Guocheng Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Liao, X., Liu, L. et al. Enhanced l-phenylalanine production by recombinant Escherichia coli BR-42 (pAP-B03) resistant to bacteriophage BP-1 via a two-stage feeding approach. J Ind Microbiol Biotechnol 38, 1219–1227 (2011). https://doi.org/10.1007/s10295-010-0900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0900-9

Keywords

Navigation