Skip to main content
Log in

Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel in situ product recovery (ISPR) approach for the (fully) integrated separation of L-phenylalanine (L-phe) from a 20 l fed-batch process with the recombinant L-tyrosine auxotrophic strain E. coli F-4/pF81 is presented. The strain was rationally constructed for the production of the aromatic amino acid. Glucose and tyrosine control is used. A reactive extraction system consisting of kerosene, the cation-selective carrier D2EHPA and sulphuric acid, all circulating in liquid-liquid centrifuges, is applied for the on-line L-phe separation from cell- and protein-free permeate. Permeate is drained off from the bioreactor bypass. Using the novel ISPR approach, a significantly extended product formation period at 0.25 mmol/(g*h) together with a reduced by-product formation and a 28% relative glucose/L-phe yield increase is observed. Thus, the ISPR approach is superior to the reference non-ISPR process and even offers extraction rates approximately three times higher than the published membrane-based process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Budzinski A (2001) Aminosäure, Peptide und die Chemie dazu. Chem Rundschau 6:10

    Google Scholar 

  2. Ager DJ, Pantaleone DP, Henderson SA, Katrizka AR, Prakash I, Walters DE (1998) Synthetische nicht nutritive Süßstoffe. Angew Chem–Ger Edit 110:1910–1916

  3. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    CAS  PubMed  Google Scholar 

  4. Drauz KH, Hoppe B, Kleemann A, Krimmer HP, Leuchtenberger W, Weckbecker C (2002) Amino acids. In: Ullmann’s Encyclopedia of Industrial Chemistry, 6th edn. Wiley-VCH, Weinheim, Germany

  5. Asano Y, Nakazawa A (1987) High yield synthesis of L-amino acids by phenylalanine dehydrogenase from Sporosarcina ureae. Agric Biol Chem 51:2305–2306

    Google Scholar 

  6. Hummel W, Schutte H, Schmidt E, Wandrey C, Kula MR (1987) Isolation of L-phenylalanine dehydrogenase from Rhodococcus sp M4 and its application for the production of L-phenylalanine. Appl Microbiol Biot 26:409–416

    CAS  Google Scholar 

  7. Nakamichi K, Nabe K, Nishida Y, Tosa T (1989) Production of L-phenylalanine from phenylpyruvate by Paracoccus denitrificans containing aminotransferase activity. Appl Microbiol Biot 30:243–246

    CAS  Google Scholar 

  8. Ziehr H, Kula MR, Schmidt E, Wandrey C, Klein J (1987) Continuous production of L-phenylalanine by transamination. Biotechnol Bioeng 29:482–487

    CAS  Google Scholar 

  9. Wood LL, Calton GJ (1988) Production of phenylalanine with immobilised cells. US patent application US-A-4728611

  10. Then J, Dherty A, Neatherway H, Marquardt R, Deger H-M, Voelskow H, Wöhner G, Präve P (1987) Production of L-phenylalanine from phenylpyrufvate using resting cells of Escherichia coli. Biotechnol Lett 9:680–684

    CAS  Google Scholar 

  11. Ikeda M, Ozaki MA, Katsumata R (1993) Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli. Appl Microbiol Biot 39:318–232

    CAS  PubMed  Google Scholar 

  12. Shu C-H, Liao C-C (2002) Optimization of L-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate. Biotechnol Bioeng 77:131–141

    Article  CAS  PubMed  Google Scholar 

  13. Wang P-M, Yeh C-Y, Shu C-H, Liao C-C (1994) A substrate feeding strategy—using an oxystat for L-phenylalanine fermentation by Corynebacterium glutamicum. Biotechnol Techs 8:843–846

    CAS  Google Scholar 

  14. Backman K, O’ Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R, Venkatasubramanian K (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 89:16–24

    Google Scholar 

  15. Gerigk M, Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R (2002b) Enhanced pilot-scale fed-batch L-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioproc Biosyst Eng 25:43–52

    Article  CAS  Google Scholar 

  16. Grinter NJ (1998) Developing an L-phenylalanine process. CHEMTECH 28(7):33–37

    CAS  Google Scholar 

  17. Konstantinov KB, Nishio N, Yoshida T (1990) Glucose feeding strategy accounting for the decreasing oxidative capacity of recombinant Escherichia coli in fed-batch cultivation for phenylalanine production. J Ferm Bioeng 70:253–260

    Article  CAS  Google Scholar 

  18. Maass D, Gerigk M, Kreutzer A, Weuster-Botz D, Wubbolts M, Takors R (2002) Membrane-based reactive extraction for integrated L-phenylalanine separation in an Escherichia coli fed-batch process: from laboratory to pilot scale. Bioproc Biosyst Eng 25:85–96

    Article  CAS  Google Scholar 

  19. Takagi M, Nishio Y, Oh G, Yoshida T (1996) Control of L-phenylalanine production by dual feeding of glucose and L-tyrosine. Biotechnol Bioeng 52:653–660

    CAS  Google Scholar 

  20. Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R (2002a) Process control for enhanced L-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80:746–754

    Article  CAS  PubMed  Google Scholar 

  21. Teramoto M, Yamashiro T, Inoue A, Matsuyama H, Miyake Y (1991) Extraction of amino acids by liquid membrane containing di(2-ethyl) phosphoric acid as carrier. J Mem Sci 58:11–21

    Article  CAS  Google Scholar 

  22. Boyadzhiev L, Atanassova I (1994) Extraction of phenyalanine from dilute solutions by rotating film pestraction. Proc Biochem 29:237–243

    CAS  Google Scholar 

  23. Lukhezo M, Kelly KM, Reuben BG, Dunne LJ, Verall MS (1996) Reactive solvent extraction of amino acids. In: Shallcross DC, Paimin R, Prvcic LM (eds) Proc ISEC 96, University of Melbourne, pp 87–92

  24. Adarkar JA, Sawant SB, Joshi JB, Pangarkar VG (1997) Extraction of amino acids using immobilized liquid membranes. Biotechnol Prog 13:493–495

    Article  CAS  Google Scholar 

  25. Cascaval D, Oniscu C, Galaction A-I (2001) Selective separation of amino acids by reactive extraction. Biochem Eng J 7:171–176

    Article  CAS  Google Scholar 

  26. Ye K, Jin S, Shimizu K (1996) Performance of lactic acid fermentation by multistage extractive fermentation. J Ferm Bioeng 81(3):240–246

    Article  CAS  Google Scholar 

  27. Honda H, Toyama Y, Takahashi H, Nakazeko T, Kobayashi T (1995) Effective lactic acid production by two-stage extractive fermentation. J Ferm Bioeng 79(6):589–593

    Article  CAS  Google Scholar 

  28. Wieczorek S, Brauer H (1998) Continuous production of citric acid with recirculation of the fermentation broth after product recovery. Part 2: product recovery and recirculation of the fermentation broth. Bioproc Eng 18:75–77

    CAS  Google Scholar 

  29. Freeman A, Woodley JM, Lilly MD (1993) In situ product removal as a tool for bioprocessing. Biotechnol 11(9):1007–1012

    CAS  PubMed  Google Scholar 

  30. Schügerl K (1994) Solvent extraction in biotechnology — recovery of primary and secondary metabolites. Springer, Berlin Heidelberg New York

  31. Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. In: Scheper T (ed) Advances in biochemcal engineering/biotechnology, vol 80. Springer, Berlin Heidelberg New York

  32. Takors R (2003) Model-based analysis and optimization of an ISPR approach using reactive extraction for pilot-scale L-phenylalanine production. Biotechnol Progr 20:57–64

    Article  Google Scholar 

  33. Vandamme EJ (1984) Biotechnology of industrial antibiotics. Marcel Dekker, New York

  34. Likidis Z, Schügerl K (1987) Recovery of penicillin by reactive extraction in centrifugal extractors. Biotechnol Bioeng 30:1032–1040

    CAS  Google Scholar 

  35. Meikrantz DH, Macaluso LL, Flim WD, Heald CJ, Mendoza G, Meikrantz SB (2002) A new annular centrifugal contactor for pharmaceutical processes. Chem Eng Commun 189:1629–1639

    Article  CAS  Google Scholar 

  36. Zeppenfeld T, Larisch C, Lengeler JW, Jahreis K (2000) Glucose transport mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behaviour of the ptsG gene. J Bacteriol 182:4443–4452

    Article  CAS  PubMed  Google Scholar 

  37. Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131

    PubMed  Google Scholar 

  38. Bastin G, Dochain D (1990) On-line Estimation and Adaptive Control of Bioreactors, Elsevier, Amsterdam, ISBN 0-444-88430-0.

  39. Maass D (2001) Prozessentwicklung zur simultanen Produktabtrennung von L-Phenylalanin. PhD Thesis, Berichte des Forschungszentrums Jülich, ISSN 0944-2952, Germany

  40. Konstantinov KB, Yoshida T, Nichio N, Seki T (1991) Physiologically motivated strategies for control of the fed-batch cultivations of recombinant Echerichia coli for phenylalanine production. J Ferment Bioeng 71(5):350–355

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christine Kaldeweier, Andreas Franz and Heidi Haase-Reiff for their support during fermentation, data acquisition/process control and HPLC analysis. We are grateful to Ursula Degner and Johannes Bongaerts for their help with constructing strain F-4/pF81. The authors are also indebted to Prof. Christian Wandrey for offering optimum working conditions at the institute. They also wish to express their thanks to the staff of DSM/DSM Biotech GmbH for their fruitful cooperation and their financial co-support together with the German Federal Ministry of Education and Research (Grant no. 0311644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Takors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüffer, N., Heidersdorf, U., Kretzers, I. et al. Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli . Bioprocess Biosyst Eng 26, 239–248 (2004). https://doi.org/10.1007/s00449-004-0354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-004-0354-4

Keywords

Navigation