Skip to main content
Log in

Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This study presents data on the production, purification, and properties of a thermostable β-xylanase produced by an Aspergillus awamori 2B.361 U2/1 submerged culture using wheat bran as carbon source. Fractionation of the culture filtrate by membrane ultrafiltration followed by Sephacryl S-200 and Q-Sepharose chromatography allowed for the isolation of a homogeneous xylanase (PXII-1), which was 32.87 kDa according to MS analysis. The enzyme-specific activity towards soluble oat spelt xylan, which was found to be 490 IU/mg under optimum reaction conditions (50°C and pH 5.0–5.5), was 17-fold higher than that measured in the culture supernatant. Xylan reaction products were identified as xylobiose, xylotriose, and xylotetraose. K m values (mg ml−1) for soluble oat spelt and birchwood xylan were 11.8 and 9.45, respectively. Although PXII-1 showed 85% activity retention upon incubation at 50°C and pH 5.0 for 20 days, incubation at pH 7.0 resulted in 50% activity loss within 3 days. PXII-1 stability at pH 7.0 was improved in the presence of 20 mM cysteine, which allowed for 85% activity retention for 25 days. This study on the production in high yields of a remarkably thermostable xylanase is of significance due to the central role that this class of biocatalyst shares, along with cellulases, for the much needed enzymatic hydrolysis of biomass. Furthermore, stable xylanases are important for the manufacture of paper, animal feed, and xylooligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andreaus J, Filho EXF, Bon EPS (2008) Biotechnology of Holocellulose—degrading enzymes. In: Hou CT, Shaw JF (eds) Biocatalysis and bioenergy. Wiley, New York, pp 197–229

    Google Scholar 

  2. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  3. Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8(4):353–368

    Article  CAS  Google Scholar 

  4. Bon EPS, Webb C (1989) Passive immobilization of Aspergillus awamori spores for subsequent glucoamylase production. Enzyme Microb Technol 11:495–499

    Article  CAS  Google Scholar 

  5. Bon EPS, Webb C (1993) Glucoamylase production and nitrogen nutrition in Aspergillus awamori. Appl Biochem Biotechnol 39:349–369

    Article  Google Scholar 

  6. Botella C, Diaz A, de Ory I, Webb C, Blandino A (2007) Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem 42(1):98–101

    Article  CAS  Google Scholar 

  7. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  8. Bray MR, Clarke AJ (1990) Essential carboxyl groups in xylanase A. Biochem J 270(1):91–96

    CAS  PubMed  Google Scholar 

  9. Campenhout LV, Somers I, Van de Craen S, Adams C (2003) In vitro test to evaluate protein degradation by feed enzymes. In: Courtin CM, Veraverbeke WS, Delcour JA (eds) Recent advances in enzymes in grain processing. Kat. Univ. Leuven, Leuven, pp 387–390

    Google Scholar 

  10. Candiano G, Ruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  11. Cardoso OAV, Filho EXF (2003) Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiol Lett 223(2):309–314

    Article  CAS  PubMed  Google Scholar 

  12. Carmona EC, Brochette-Braga MR, Pizzirani-Kleiner AA, Jorge JA (1998) Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol Lett 166:311–315

    Article  CAS  Google Scholar 

  13. Carmona EC, Fialho MB, Buchgnani EC, Coelho GD, Brocheto-Braga MR, Jorge JA (2005) Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochem 40(1):359–364

    Article  CAS  Google Scholar 

  14. Chen L, Zhang M, Zhang D, Chen X, Sun C, Zhou B, Zhang Y (2009) Purification and enzymatic characterization of two β-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharides production. Bioresour Technol 100:5230–5236

    Article  CAS  PubMed  Google Scholar 

  15. Chen M, Xia L, Xue P (2007) Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Biodegrad 59:85–89

    Article  CAS  Google Scholar 

  16. Coelho GD, Carmona EC (2003) Xylanolytic complex from Aspergillus giganteus: production and characterization. J Basic Microbiol 43(4):269–277

    Article  CAS  PubMed  Google Scholar 

  17. Coughlan MP (1992) Towards an understanding of the mechanism of action of main chain cleaving xylanases. Elsevier Science, Amsterdam

    Google Scholar 

  18. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Article  PubMed  Google Scholar 

  19. Dekker RFH, Richards GN (1975) Purification, properties and mode of action of hemicellulase I by Ceratocystis paradoxa. Carbohydr Res 39:97–114

    Article  CAS  PubMed  Google Scholar 

  20. Deshpande V, Hinge J, Rao M (1990) Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site. Biochim Biophys Acta 1041(2):172–177

    CAS  PubMed  Google Scholar 

  21. Fang H, Chang S, Lan C, Fang TJ (2008) Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochem 43(1):49–55

    Article  CAS  Google Scholar 

  22. Fang H, Chang SM, Hsieh MC, Fang TJ (2007) Production, optimization growth conditions and properties of the xylanase from Aspergillus carneus M34. J Mol Catal B: Enzym 49:36–42

    Article  CAS  Google Scholar 

  23. Fengxia L, Mei L, Zhaoxin L, Xiaomei B, Haizhen Z, Yi W (2008) Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour Technol 99:5938–5941

    Article  Google Scholar 

  24. Ferreira HM, Filho EXF (2004) Purification and characterization of beta-mannanase from Trichoderma harzianum strain T4. Carbohydr Polym 57:23–29

    Article  CAS  Google Scholar 

  25. Filho EXF, Puls J, Coughlan MP (1993) Biochemical characteristics of two endo-β-l, 4-xylanases produced by Penicillium capsulatum. J Ind Microbiol 11:171–180

    Article  Google Scholar 

  26. Filho EXF (1998) Hemicellulases and biotechnology. In: Pandalai SG (ed) Recent research developments in microbiology. Research Signpost, Trivandrum, India, pp 165–176

    Google Scholar 

  27. Fournier RA, Frederick MM, Frederick JR, Reilly PJ (1985) Purification and characterization of endo-xylanases from Aspergillus niger. III. An enzyme of pI 3.65. Biotechnol Bioeng 27:539–546

    Article  Google Scholar 

  28. Frederick MM, Frederick JR, Frayzke AR, Reilly PJ (1981) Purification and characterization of a xylobiose and xylose-producing endo-xylanase from Aspergillus niger. Carbohydr Res 97:87–103

    Article  CAS  Google Scholar 

  29. Frederick MM, Kang SH, Frederick JR, Reilly PJ (1985) Purification and characterization of endo-xylanases from Aspergillus niger. I. Two isozymes active on xylan backbones near branch points. Biotechnol Bioeng 27:525–532

    Article  CAS  PubMed  Google Scholar 

  30. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  31. Golubev AM, Ibatullin FH, Kilimnik AY, Radionova NA, Neustroev KN (1993) Isolation and properties of endoxylanase and β-xylosidase from Aspergillus oryzae. Biochem 58:565–570

    Google Scholar 

  32. Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58(2):137–161

    Article  CAS  Google Scholar 

  33. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  34. Ito K, Ikemasu T, Ishikawa T (1992) Cloning and sequencing of the xynA gene encoding xylanase A of Aspergillus kawachii. Biosci Biotechnol Biochem 56:906–912

    Article  CAS  PubMed  Google Scholar 

  35. Keskar SS, Srinivasan MC, Deshpande VV (1989) Chemical modification of a xylanase from a thermotolerant Streptomyces. Evidence for essential tryptophan and cysteine residues at the active site. Biochem J 261(1):49–55

    CAS  PubMed  Google Scholar 

  36. Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59(6):1725–1730

    CAS  PubMed  Google Scholar 

  37. Kormelink FJM, Searle-van Leeuwen MJF, Wood TM, Voragen AGJ (1993) Purification and characterization of three endo-(1,4)-β-xylanases and one β-xylosidase from Aspergillus awamori. J Biotechnol 27:249–265

    Article  CAS  Google Scholar 

  38. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  CAS  PubMed  Google Scholar 

  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  40. Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 121:1081–1099

    Article  PubMed  Google Scholar 

  41. Leatherbarrow RJ (1987) Enzfitter: a non-linear regression data analysis program for the IBM PC. Biosoft, London, pp 1–99

    Google Scholar 

  42. Lemos JLS, Bon EPS, Santana MFE, Junior NP (2000) Thermal stability of xylanases produced by Aspergillus awamori. Braz J Microbiol 31(3):206–211

    Article  CAS  Google Scholar 

  43. Liu MQ, Weng XY, Sun JY (2006) Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expr Purif 48:292–299

    CAS  PubMed  Google Scholar 

  44. Marui M, Nakanishi K, Yasui T (1993) Chemical modification of xylanases from Streptomyces sp. Biosci Biotechnol Biochem 57(4):662–663

    Article  CAS  Google Scholar 

  45. Medeiros RG, Silva LP, Azevedo RB, Silva FG Jr, Filho EXF (2007) The use of atomic force microscopy as a tool to study the effect of a xylanase from Humicola grisea var. thermoidea in kraft pulp bleaching. Enzyme Microb Technol 40:723–731

    Article  CAS  Google Scholar 

  46. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  47. Nascimento RP, Coelho RRR, Marques S, Alves L, Gírio FM, Bon EPS, Amaral-Collaço MT (2002) Production and partial characterization of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb Technol 31:549–555

    Article  CAS  Google Scholar 

  48. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510

    Article  PubMed  Google Scholar 

  49. Peixoto-Nogueira SC, Michelin M, Betini JHA, Jorge JA, Terenzi HF, Polizeli MLTM (2008) Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J Ind Microbiol Biotechnol 36:149–155

    Article  Google Scholar 

  50. Poutanen K, Raettoe M, Puls J, Viikari L (1987) Evaluation of different microbial xylanolytic systems. J Biotechnol 6:49–60

    Article  CAS  Google Scholar 

  51. Raj KC, Chandra TS (1996) Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiol Lett 145:457–461

    Article  CAS  PubMed  Google Scholar 

  52. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  PubMed  Google Scholar 

  53. Saha BC (2000) α-l-Arabinofuranosidase: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18:403–423

    Article  CAS  PubMed  Google Scholar 

  54. Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA, Milagres AMF, Polizeli MLTM (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem 40:1823–1828

    Article  CAS  Google Scholar 

  55. Shah AR, Madamwar D (2005) Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem 40:1763–1771

    Article  CAS  Google Scholar 

  56. Shei JC, Fratzke AR, Frederick MM, Frederick JR, Reilly PJ (1985) Purification and characterization of endo-xylanases from Aspergillus niger. II. An enzyme of pI 4.5. Biotechnol Bioeng 27:533–538

    Article  CAS  PubMed  Google Scholar 

  57. Silva CH, Puls J, Sousa MV, Filho EXF (1999) Purification and characterization of low-molecular-weight xylanase from solid-state cultures of Aspergillus fumigatu fresenius. Rev Microbiol 30:114–119

    Google Scholar 

  58. Squina FM, Mort AJ, Decker SR, Prade RA (2009) Xylan decomposition by Aspergillus clavatus endo-xylanase. Protein Expr Purif 65–71

  59. Subramaniyan S, Prema P (2000) Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol Lett 183:1–20

    Article  CAS  PubMed  Google Scholar 

  60. Sudan R, Bajaj B (2007) Production and biochemical characterization of xylanase from an alkalitolerant novel species Aspergillus niveus RS2. World J Microbiol Biotechnol 23(4):491–500

    Article  CAS  Google Scholar 

  61. Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39:897–902

    Article  CAS  Google Scholar 

  62. Törrönem A, Rouvinem J (1997) Structural and functional properties of low-molecular-weight endo- 1,4-p-xylanases. J Biotechnol 57:137–149

    Article  Google Scholar 

  63. Vasquez MJ, Alonso JL, Dominguez H, Parajo JC (2002) Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of eucalyptus wood. Food Biotechnol 16:91–105

    Article  Google Scholar 

  64. Vieira WB, Moreira LRS, Neto AM, Filho EXF (2007) Production and characterization of an enzyme complex from a new strain of Clostridium thermocellum with emphasis on its xylanase activity. Braz J Microbiol 38:237–242

    Article  Google Scholar 

  65. Ximenes FA, Sousa MV, Puls J, Silva FG Jr, Filho EXF (1999) Purification and characterization of a low-molecular weight xylanase produced by Acrophialophora nainiana. Curr Microbiol 38:18–21

    Article  CAS  PubMed  Google Scholar 

  66. Yuan Q, Adachi T, Takenaka S, Murakami S, Tanaka M, Aoki K (2008) Production and accumulation of xylooligosaccharides with long chains by growing culture and xylanase of a mutant strain of Bacillus pumilus. Chin J Biotech 24(7):1221–1227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research and scholarship grants from the National Council for Scientific and Technological Development (CNPq) of the Brazilian Ministry of Science and Technology and from a scholarship grant from the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) of the Ministry of Education. We are thankful to Dr. Marília Martins Nishikawa from the National Institute of Quality Control in Health (INCQS) of the Oswaldo Cruz Foundation for preserving the Aspergillus awamori strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba Pinto da Silva Bon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, R.S.S., Siqueira, F.G., Souza, M.V. et al. Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori . J Ind Microbiol Biotechnol 37, 1041–1051 (2010). https://doi.org/10.1007/s10295-010-0751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0751-4

Keywords

Navigation