Skip to main content
Log in

Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The nitrilase from Alcaligenes faecalis ECU0401 belongs to the category of arylacetonitrilase, which could hydrolyze 2-chloromandelonitrile, 3,4-dimethoxyphenylacetonitrile, mandelonitrile, and phenylacetonitrile into the corresponding arylacetic acids. To overcome the permeability barrier and prepare whole cell biocatalysts with high activities, permeabilization of Alcaligenes faecalis ECU0401 in relation to nitrilase activity was optimized by using cetyltrimethylammonium bromide (CTAB) as permeabilizing agent. The nitrilase activity from Alcaligenes faecalis ECU0401 increased 4.5-fold when the cells were permeabilized with 0.3% (w/v) CTAB for 20 min at 25°C and pH 6.5. Consequently, almost all the mandelonitrile was consumed and converted to (R)-(−)-mandelic acid with greater than 99.9% enantiomeric excess (e.e.) by the CTAB-permeabilized cells. The permeability barrier has been significantly reduced in the hydrolysis of mandelonitrile by using CTAB-permeabilized cells and a dynamic resolution was successfully achieved, giving a 100% theoretical yield of (R)-(−)-mandelic acid. Efficient biocatalyst recycling was achieved as a result of cell immobilization in calcium alginate, with a product-to-biocatalyst ratio of 3.82 g (R)-(−)-mandelic acid g−1 dry cell weight (dcw) cell after 20 cycles of repeated use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. Banerjee A, Kaul P, Banerjee UC (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl Microbiol Biotechnol 72:77–87

    Article  CAS  PubMed  Google Scholar 

  2. Banerjee A, Kaul P, Sharma R, Banerjee UC (2003) A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase producing microorganisms. J Biomol Screen 8:559–565

    Article  CAS  PubMed  Google Scholar 

  3. Banerjee A, Sharma R, Banerjee UC (2002) Nitrile degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Bassat A, Walls AM, Plummer MA, Sigmund AE, Spillan WL, DiCosimo R (2008) Optimization of biocatalyst specific activity for glycolic acid production. Adv Synth Catal 350:1761–1969

    Article  CAS  Google Scholar 

  5. Bevacqua F, Basso A, Gitt R, Bradley M, Chimirri A (2001) Solid-phase Friedel–Crafts acylation on polystyrene resins-synthesis of antiepiletic 1-aryl-3, 5-dihydro-4H-2,3-benzodiazepin-4-ones. Tetrahedron Lett 42:7683–7685

    Article  CAS  Google Scholar 

  6. Brady D, Beeton A, Zeevaart J, Kgaje C, vanRantwijk F, Sheldon RA (2004) Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl Microbiol Biotechnol 64:76–85

    Article  CAS  PubMed  Google Scholar 

  7. Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Chem Biol 12:775–782

    CAS  Google Scholar 

  8. Davey HM (2002) Flow cytometric techniques for the detection of microorganisms. Methods Cell Sci 24:91–97

    Article  CAS  PubMed  Google Scholar 

  9. De Santis G, Zhu ZL, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    Article  Google Scholar 

  10. Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159

    Article  CAS  PubMed  Google Scholar 

  11. Gröger H (2001) Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 343:547–558

    Article  Google Scholar 

  12. He YC, Xu JH, Su JH, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440

    Article  CAS  PubMed  Google Scholar 

  13. He YC, Xu JH, Pan J, Ouyang LM, Xu Y (2008) Preparation of (R)-(−)-mandelic acid and its derivatives from racemates by enantioselective degradation with a newly isolated bacterial strain Alcaligenes sp. ECU0401. Bioprocess Biosys Eng 31:445–451

    Article  CAS  Google Scholar 

  14. He YC, Xu JH, Xu Y, Ouyang LM, Pan J (2007) Biocatalytic synthesis of (R)-mandelic acid from racemic mandelonitrile by a newly isolated nitrilase-producer Alcaligenes sp. ECU0401. Chin Chem Lett 18(6):677–680

    Article  CAS  Google Scholar 

  15. Hohenblum H, Borth N, Mattanovich D (2003) Assessing viability and cell-associated product recombinant producing Pichia pastoris with flow cytometry. J Biotechnol 102:281–290

    Article  CAS  PubMed  Google Scholar 

  16. Ju X, Yu HL, Pan J, Wei DZ, Xu JH (2009) Bioproduction of chiral mandelate by enantioselective deacylation of α-acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp. ECU1011. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2286-z

  17. Kabaivanova L, Dobreva E, Dimitrov P, Emanuilova E (2005) Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J Ind Microbiol Biotechnol 32:7–11

    Article  CAS  PubMed  Google Scholar 

  18. Kaul P, Banerjee A, Mayilraj S, Banerjee UC (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron Asymmetry 15:207–211

    Article  CAS  Google Scholar 

  19. Kaplan O, Vejvoda V, Charvátová-Pinvejcová A, Martínková L (2006) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896

    Article  CAS  PubMed  Google Scholar 

  20. Kiziak C, Stolz A (2009) Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 75:5592–5599

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi M, Izui H, Nagasawa T, Yamada H (1993) Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile: cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proc Natl Acad Sci U S A 90:247–251

    Article  Google Scholar 

  22. Ma DY, Wang DX, Pan J, Huang ZT, Wang MX (2008) Nitrile biotransformations for the synthesis of enantiomerically enriched β2-, and β3-hydroxy and -alkoxy acids and amides, a dramatic O-substituent effect of the substrates on enantioselectivity. Tetrahedron Asymmetry 19(3):322–329

    Article  CAS  Google Scholar 

  23. Mauger J, Nagasawa T, Yamada H (1990) Occurrence of a novel nitrilase, arylacetonitrilase, in Alcaligenes faecalis JM3. Arch Microblol 155:1–6

    Article  CAS  Google Scholar 

  24. Nagalakshmi VN, Pai JS (1994) Permeabilization of Escherichia coli cells for enhanced penicillin acylase activity. Biotechnol Tech 8:431–434

    Article  CAS  Google Scholar 

  25. Nicholson LW, Rand CL, Weiner DP, Robertson D, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124(31):9024–9025

    Article  PubMed  Google Scholar 

  26. Ni Y, Mao ZC, Chen RR (2006) Outer membrane mutation effects on UDP-glucose permeability and whole-cell catalysis rate. Appl Microbiol Biotechnol 73:384–393

    Article  CAS  PubMed  Google Scholar 

  27. Powell KA, Ramer SW, del Cardayre SB, Stemmer WPC, Tobin MB, Longchamp PF, Huisman GW (2001) Directed evolution and biocatalysis. Angew Chem Int Ed 40:3948–3959

    Article  CAS  Google Scholar 

  28. Qiu ZM, He YB, Zheng DM, Liu FF (2005) Study on the synthesis of phenylacetic acid by carbonylation of benzyl chloride under normal pressure. J Nat Gas Chem 14:40–46

    Google Scholar 

  29. Raj J, Seth A, Prasad S, Bhalla TC (2007) Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 74:535–539

    Article  CAS  PubMed  Google Scholar 

  30. Silva WOB, Mitidieri S, Schrank A, Vainstein MH (2005) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 40:321–326

    Article  Google Scholar 

  31. Smith DS, Maxwell PW, DeBoer SH (2005) Comparison of several methods for the extraction of DNA from potatoes and potato-derived products. J Agric Food Chem 53:9848–9859

    Article  CAS  PubMed  Google Scholar 

  32. Subhash CN, Kaul P, Barse B, Banerjee A, Bannerjee UC (2008) Studies on the production of enantioselective nitrilase in a stirred tank bioreactor by Pseudomonas putida. Bioresourc Technol 99:26–31

    Article  Google Scholar 

  33. Tavares F, Sellstedt A (2000) A simple, rapid and non-destructive procedure to extract cell wall-associated proteins from Frankia. J Microbiol Methods 39:171–178

    Article  CAS  PubMed  Google Scholar 

  34. Vaidya BK, Mutalik SR, Joshi RM, Nene SN, Kulkarni BD (2009) Enhanced production of amidase from Rhodococcus erythropolis MTCC 1526 by medium optimisation using a statistical experimental design. J Ind Microbiol Biotechnol 36(5):671–678

    Article  CAS  PubMed  Google Scholar 

  35. Wang T, Zhang N, Du L (2005) Isolation of RNA of high quality and yield from Ginkgo biloba leaves. Biotechnol Lett 27:629–633

    Article  PubMed  Google Scholar 

  36. Wu SJ, Fogiel AJ, Petrillo KL, Jackson RE, Parker KN, DiCosimo R, Ben-Bassat A, O’Keefe DP, Payne MS (2008) Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol Bioeng 99(3):717–720

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto KZ, Oishi K, Fujimashu I, Komatsu KI (1991) Production of R-(−)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032

    CAS  PubMed  Google Scholar 

  38. Zheng YG, Chen J, Liu ZQ, Wu MH, Xing LY, Shen YC (2008) Isolation, identification and characterization of Bacillus subtilis ZJB-063, a versatile nitrile-converting bacterium. Appl Microbiol Biotechnol 77:985–993

    Article  CAS  PubMed  Google Scholar 

  39. Zhu DM, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2008) A new nitrilase from Bradyrhizobium japonicum USDA110 gene cloning, biochemical characterization and substrate specificity. J Biotechnol 133:327–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 0773038 & 20902023) and Ministry of Science and Technology (Nos. 2009CB724706 & 2009ZX09501-016) and the Open Project Program of the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (No. 2008004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YC., Zhang, ZJ., Xu, JH. et al. Biocatalytic synthesis of (R)-(−)-mandelic acid from racemic mandelonitrile by cetyltrimethylammonium bromide-permeabilized cells of Alcaligenes faecalis ECU0401. J Ind Microbiol Biotechnol 37, 741–750 (2010). https://doi.org/10.1007/s10295-010-0720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0720-y

Keywords

Navigation