Skip to main content
Log in

Preparation of (R)-(−)-mandelic acid and its derivatives from racemates by enantioselective degradation with a newly isolated bacterial strain Alcaligenes sp. ECU0401

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An enantioselective mandelate-degrading bacterium, Alcaligenes sp. ECU0401, was newly isolated from soil. By fed-batch culture, (R)-(−)-mandelic acid was successfully prepared in a 5-L fermenter with 32.8% isolated yield and >99.9% enantiomeric excesses (e.e.) from totally 3.04% (w/v) of racemic mandelic acid after 99 h of biotransformation. The optimal reaction pH and temperature were 6.5 and 30 °C, respectively. Using the resting cell as a biocatalyst for asymmetric degradation of racemic mandelic acid and chloro-substituted derivatives thereof, (R)-(−)-mandelic acid, (R)-(−)-o-chloromandelic acid, (S)-(+)-m-chloromandelic acid and (S)-(+)-p-chloromandelic acid were recovered with high analytic yields and excellent enantiomeric excesses (e.e. > 99.9%). (R)-(−)-Mandelic acid could also be obtained after 12 h of biotransformation with 41.5% isolated yield and >99.9% e.e.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. De Santis G, Zhu ZL, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP, Robertson DE, Burk MJ (2002) An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 124:9024–9025

    Article  CAS  Google Scholar 

  2. Yamamoto K, Fujimatsu I, Komatsu K (1992) Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J Ferment Bioeng 73:425–430

    Article  CAS  Google Scholar 

  3. Kaul P, Banerjee A, Mayilraj S, Banerjee UC (2004) Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron Asymmetry 15:207–211

    Article  CAS  Google Scholar 

  4. Baar MR, Cerrone-Szakal AL (2005) Enantiomeric resolution of (±)-mandelic acid by (1R,2S)-(−)-ephedrine: an organic chemistry laboratory experiment illustrating stereoisomerism. J Chem Educ 82:1040–1042

    Article  CAS  Google Scholar 

  5. Rong F, Feng XG, Yuan CW, Fu DG, Li P (2006) Chiral separation of mandelic acid and its derivatives by thin layer chromatography using molecularly imprinted stationary phases. J Liq Chromatogr Relat Technol 29:2593–2602

    Article  CAS  Google Scholar 

  6. Sarhan A, El-Zahab MA (1987) Racemic resolution of mandelic acid on polymers with chiral cavities, 2. Enzyme-analogue stereospecific conversion of configuration. Die Makromol Chem Rapid Commun 8:555–561

    Article  CAS  Google Scholar 

  7. Lorenz H, Polenske D, Seidel-Morgenstern A (2006) Morgenstern application of preferential crystallization to resolve racemic compounds in a hybrid process. Chirality 18:828–840

    Article  CAS  Google Scholar 

  8. Bauza R, Rios A, Valcarcel M (2004) Enantioselective supercritical fluid extraction from racemic mixtures by use of chiral selectors. Sep Sci Technol 39:459–478

    Article  CAS  Google Scholar 

  9. Elliot JD, Choi VFM, Johnson WS (1983) Asymmetric synthesis via acetal templates. 5. Reactions with cyanotrimethylsilane. Enantioselective preparation of cyanohydrins and derivatives. J Org Chem 48:2294–2295

    Article  Google Scholar 

  10. Yamamoto KZ, Oishi K, Fujimashu I, Komatsu K (1991) Production of R-(−)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57:3028–3032

    CAS  Google Scholar 

  11. Yamazaki Y, Maeda H (1986) (R)-(−)-Mandelic acid and other 2-hydroxycarboxylic acids: screening for the enzyme, and its purification, characterization and use. Agric Biol Chem 50:2621–2631

    CAS  Google Scholar 

  12. Fernandez-Lorente G, Fernández-Lafuente R, Palomo JM, Mateo C, Bastida A, Coca J, Haramboure T, Hernández-Justiz O, Terreni M, Guisán JM (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. J Mol Catal B Enzym 11:649–656

    Article  CAS  Google Scholar 

  13. Strauss UT, Kandelbauer A, Faber K (2000) Stabilization and activity-enhancement of mandelate racemase from Pseudomonas putida ATCC 12336 by immobilization. Biotechnol Lett 22:515–520

    Article  CAS  Google Scholar 

  14. Shinobu O, Yutaka K, Yasushi N (1992) Synthesis of optically active mandelic acid via microbial oxidation of racemic 1-phenyl-1,2-ethanediol. Biosci Biotechnol Biochem 56:1216–1220

    Article  Google Scholar 

  15. Patterson MAK, Szajewski RP, Whitesides GM (1981) Enzymatic conversion of α-keto aldehydes to optically active α-hydroxy acids using glyoxalase I and II. J Org Chem 46:4682–4685

    Article  CAS  Google Scholar 

  16. Takahashi E, Nakamichi K, Furui M, Mori T (1995) R-(−)-Mandelic acid production from racemic mandelic acids by Pseudomonas polycolor with asymmetric degrading activity. J Ferment Bioeng 79:439–442

    Article  CAS  Google Scholar 

  17. Huang HR, Xu JH (2006) Preparation of (S)-mandelic acid from racemate using growing cells of Pseudomonas putida ECU1009 with (R)-mandelate degradation activity. Biochem Eng J 30:11–15

    Article  CAS  Google Scholar 

  18. Gihani MTE, Williams JMJ (1999) Dynamic kinetic resolution. Curr Opin Chem Biol 3:11–15

    Article  CAS  Google Scholar 

  19. Tsuchiya S, Miyamoto K, Ohta H (1992) Highly efficient conversion of (±)-mandelic acid to its (R)-(−)-enantiomer by combination of enzyme-mediated oxidation and reduction. Biotechnol Lett 14:1137–1142

    Article  CAS  Google Scholar 

  20. Jamaluddin M, Rao PVS, Vaidyanathan CS (1970) Involvement of the protocatechulate pathway in the metabolism of mandelic acid by Aspergillus niger. J Bacteriol 101:786–793

    CAS  Google Scholar 

  21. Takahashi E, Nakamichi K, Furui M, Mori T (1995) R-(−)-Mandelic acid production from racemic mandelic acids using Pseudomonas polycolor IFO 3918 and Micrococcus freudenreichii FERM-P 13221. J Ferment Bioeng 3:247–250

    Article  Google Scholar 

  22. He YC, Xu JH, Xu Y, Ouyang LM, Pan J (2007) Biocatalytic synthesis of (R)-mandelic acid from racemic mandelonitrile by a newly isolated nitrilase-producer Alcaligenes sp. ECU0401. Chin Chem Lett 18:677–680

    Article  CAS  Google Scholar 

  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  24. Huang HR, Xu JH, Xu Y, Pan J, Liu X (2005) Preparation of (S)-mandelic acids by enantioselective degradation of racemates with a new isolate Pseudomonas putida ECU1009. Tetrahedron Asymmetry 16:2113–2117

    Article  CAS  Google Scholar 

  25. Liese A, Seelbach K, Wandrey C (2000) Process. In: Industrial Biotransformations, Wiley-VCH, Weinheim, pp 93–392

  26. Faber K (1997) Biocatalytical applications. In: Biotransformations in Organic Chemistry. Springer, Berlin, pp 29–331

  27. Gröger H (2001) Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 343:547–558

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (grant no. 20506037) and the Ministry of Education, P. R. China (grant no. 20050251011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YC., Xu, JH., Pan, J. et al. Preparation of (R)-(−)-mandelic acid and its derivatives from racemates by enantioselective degradation with a newly isolated bacterial strain Alcaligenes sp. ECU0401. Bioprocess Biosyst Eng 31, 445–451 (2008). https://doi.org/10.1007/s00449-007-0181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0181-5

Keywords

Navigation